【題目】幾何探究題

(1)發(fā)現(xiàn):在平面內(nèi),若BCa,ACb,其中ab

當(dāng)點(diǎn)A在線段BC上時(shí)(如圖1),線段AB的長(zhǎng)取得最小值,最小值為   ;

當(dāng)點(diǎn)A在線段BC延長(zhǎng)線上時(shí)(如圖2),線段AB的長(zhǎng)取得最大值,最大值為   

(2)應(yīng)用:點(diǎn)A為線段BC外一動(dòng)點(diǎn),如圖3,分別以ABAC為邊,作等邊△ABD和等邊△ACE,連接CD、BE

證明:CDBE;

BC3AC1,則線段CD長(zhǎng)度的最大值為   

(3)拓展:如圖4,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(20),點(diǎn)B的坐標(biāo)為(50),點(diǎn)P為線AB外一動(dòng)點(diǎn),且PA2PMPB,∠BPM90°.請(qǐng)直接寫出線段AM長(zhǎng)的最大值及此時(shí)點(diǎn)P的坐標(biāo).

【答案】(1)ab a+b;(2)①證明見(jiàn)解析;②4;(3)滿足條件的點(diǎn)P坐標(biāo)(2,)(2,﹣),AM的最大值為2+3

【解析】

1)根據(jù)點(diǎn)A位于線段BC上時(shí),線段AB的長(zhǎng)取得最小值,根據(jù)點(diǎn)A位于BC的延長(zhǎng)線上時(shí),線段AB的長(zhǎng)取得最大值,即可得到結(jié)論;

2)①根據(jù)等邊三角形的性質(zhì)得到ADAB,ACAE,∠BAD=∠CAE60°,推出△CAD≌△EAB,根據(jù)全等三角形的性質(zhì)得到CDBE;

②由于線段CD長(zhǎng)的最大值=線段BE的最大值,根據(jù)(1)中的結(jié)論即可得到結(jié)果;

3)將△APM繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到△PBN,連接AN,得到△APN是等腰直角三角形,根據(jù)全等三角形的性質(zhì)得到PNPA2BNAM,根據(jù)當(dāng)N在線段BA的延長(zhǎng)線時(shí),線段BN取得最大值,即可得到最大值為2+3;如圖2,過(guò)PPEx軸于E,根據(jù)等腰直角三角形的性質(zhì)即可得到結(jié)論.

(1)∵當(dāng)點(diǎn)A在線段BC上時(shí),線段AB的長(zhǎng)取得最小值,最小值為BCAC,∵BCa,ACb,∴BCACab,

當(dāng)點(diǎn)A在線段BC延長(zhǎng)線上時(shí),線段AB的長(zhǎng)取得最大值,最大值為BC+AC,∵BCaACb,∴BC+ACa+b,

故答案為:ab,a+b;

(2)①∵△ABDACE是等邊三角形,

ADAB,ACAE,∠BAD=∠CAE60°,

∴∠DAC=∠BAE

ACDAEB中,,

∴△ACD≌△AEB(SAS)

CDBE;

②∵線段CD的最大值=線段BE長(zhǎng)的最大值,

(1)知,當(dāng)線段BE的長(zhǎng)取得最大值時(shí),點(diǎn)EBC的延長(zhǎng)線上,

∴最大值為BC+CEBC+AC4,

故答案為:4;

(3)∵將APM繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到PBN,連接AN,

APN是等腰直角三角形,

PNPA2BNAM,

A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),

OA2,OB5,

AB3,

∴線段AM長(zhǎng)的最大值=線段BN長(zhǎng)的最大值,

∴當(dāng)N在線段BA的延長(zhǎng)線時(shí),線段BN取得最大值,

最大值=AB+AN,

ANAP2,

∴最大值為2+3;

如圖2,過(guò)PPEx軸于E,連接BE

∵△APN是等腰直角三角形,

PEAE,

OEBOABAE532,

P(2,)

如圖3中,根據(jù)對(duì)稱性可知,當(dāng)點(diǎn)P在第四象限時(shí),P(2,﹣)時(shí),也滿足條件.

綜上述,滿足條件的點(diǎn)P坐標(biāo)(2,)(2,﹣),AM的最大值為2+3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為獎(jiǎng)勵(lì)優(yōu)秀學(xué)生,某校準(zhǔn)備購(gòu)買一批文具袋和圓規(guī)作為獎(jiǎng)品,已知購(gòu)買1個(gè)文具袋和2個(gè)圓規(guī)需21元,購(gòu)買2個(gè)文具袋和3個(gè)圓規(guī)需39元。

1)求文具袋和圓規(guī)的單價(jià)。

2)學(xué)校準(zhǔn)備購(gòu)買文具袋20個(gè),圓規(guī)若干,文具店給出兩種優(yōu)惠方案:

方案一:購(gòu)買一個(gè)文具袋還送1個(gè)圓規(guī)。

方案二:購(gòu)買圓規(guī)10個(gè)以上時(shí),超出10個(gè)的部分按原價(jià)的八折優(yōu)惠,文具袋不打折.

①設(shè)購(gòu)買面規(guī)m個(gè),則選擇方案一的總費(fèi)用為______,選擇方案二的總費(fèi)用為______.

②若學(xué)校購(gòu)買圓規(guī)100個(gè),則選擇哪種方案更合算?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中, AB8cm,BC12cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/秒的速度沿BC向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

1)如圖1,SDCP .(用t的代數(shù)式表示)

2)如圖1,當(dāng)t3時(shí),試說(shuō)明:△ABP≌△DCP

3)如圖2,當(dāng)點(diǎn)P從點(diǎn)B開(kāi)始運(yùn)動(dòng)的同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以v cm/秒的速度沿CD向點(diǎn)D運(yùn)動(dòng),是否存在這樣v的值,使得△ABP與△PQC全等?若存在,請(qǐng)求出v的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷一種成本為每千克40元的水產(chǎn)品,據(jù)市場(chǎng)分析,若按每千克50元銷售,一個(gè)月能售出500千克.若銷售價(jià)每漲1元,則月銷售量減少10千克.

(1)要使月銷售利潤(rùn)達(dá)到最大,銷售單價(jià)應(yīng)定為多少元?

(2)要使月銷售利潤(rùn)不低于8000元,請(qǐng)結(jié)合圖象說(shuō)明銷售單價(jià)應(yīng)如何定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】航拍無(wú)人機(jī)甲從海拔處出發(fā),以勻速鉛直上升,與此同時(shí),航拍無(wú)人機(jī)乙從海拔處出發(fā),以勻速鉛直上升.設(shè)無(wú)人機(jī)上升時(shí)間為,無(wú)人機(jī)甲、乙所在位置的高度分別為、

1)根據(jù)題意,填寫下表:

上升時(shí)間

5

10

25

60

2)請(qǐng)你分別寫出的關(guān)系式;

3)在某時(shí)刻兩架無(wú)人機(jī)能否位于同一高度?若能,求無(wú)人機(jī)上升的時(shí)間和所在高度;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知APB=30°,OP=3cm,O的半徑為1cm,若圓心O沿著B(niǎo)P的方向在直線BP上移動(dòng).

(Ⅰ)當(dāng)圓心O移動(dòng)的距離為1cm時(shí),則O與直線PA的位置關(guān)系是

(Ⅱ)若圓心O的移動(dòng)距離是d,當(dāng)O與直線PA相交時(shí),則d的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競(jìng)賽,從中抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),并按照成績(jī)從低到高分成A,B,C,D,E五個(gè)小組,繪制統(tǒng)計(jì)圖如下(未完成),解答下列問(wèn)題:

1)樣本容量為  ,頻數(shù)分布直方圖中a  ;

2)扇形統(tǒng)計(jì)圖中D小組所對(duì)應(yīng)的扇形圓心角為n°,求n的值并補(bǔ)全頻數(shù)分布直方圖;

3)若成績(jī)?cè)?/span>80分以上(不含80分)為優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績(jī)優(yōu)秀的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列四項(xiàng)調(diào)查中,方式正確的是  

A. 對(duì)某類煙花爆竹燃放安全情況,采用全面調(diào)查的方式

B. 了解某班同學(xué)每周鍛煉的時(shí)問(wèn),采用全面調(diào)查的方式

C. 為保證運(yùn)載火箭的成功發(fā)射,對(duì)其所有的零部件采用抽樣調(diào)查的方式

D. 了解某省中學(xué)生旳視力情況,采用全面調(diào)查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是RtABC的外接圓,ABC=90°,弦BD=BA,AC=13,BC=5,BEDC交DC的延長(zhǎng)線于點(diǎn)E

(1)求證:CBECA的角平分線;

(2)求DE的長(zhǎng);

(3)求證:BE是O的切線

查看答案和解析>>

同步練習(xí)冊(cè)答案