(2012•鄂州)若關于x的不等式
4+x
3
x+2
2
x+a
2
<0
的解集為x<2,則a的取值范圍是
a≤-2
a≤-2
分析:根據(jù)不等式的性質求出每個不等式的解集,根據(jù)找不等式組解集的規(guī)律得出-a≥2,求出即可.
解答:解:
4+x
3
x+2
2
x+a
2
<0②
,
解不等式①得:x<2,
解不等式②得:x<-a,
∵不等式組的解集是x<2,
∴-a≥2,
∴a≤-2,
故答案為:a≤-2
點評:本題考查了不等式的性質、解一元一次不等式(組)的應用,關鍵是能根據(jù)不等式的解集得出關于a的不等式,題目比較好,難度不大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•鄂州)直線y=-
1
2
x-1與反比例函數(shù)y=
k
x
(x<0)的圖象交于點A,與x軸相交于點B,過點B作x軸垂線交雙曲線于點C,若AB=AC,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鄂州)如圖,四邊形OABC為菱形,點A,B在以O為圓心的弧上,若OA=2,∠1=∠2,則扇形ODE的面積為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鄂州)如圖,梯形ABCD是等腰梯形,且AD∥BC,O是腰CD的中點,以CD長為直徑作圓,交BC于E,過E作EH⊥AB于H.EH=
1
2
CD,
(1)求證:OE∥AB;
(2)求證:AB是⊙O的切線;
(3)若BE=4BH,求
BH
CE
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鄂州)已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x-2經過A、C兩點,且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設s=
ED+OPED•OP
,當t為何值時,s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案