【題目】填空,完成下列說理過程

如圖,點(diǎn)A,O,B在同一條直線上, OD,OE分別平分∠AOC和∠BOC

1)求∠DOE的度數(shù);

2)如果∠COD=65°,求∠AOE的度數(shù).

解:(1)如圖,因?yàn)?/span>OD是∠AOC的平分線,

所以∠COD =AOC

因?yàn)?/span>OE是∠BOC 的平分線,

所以 =BOC

所以∠DOE=COD+ =(∠AOC+BOC=AOB= °

2)由(1)可知∠BOE=COE = -∠COD= °.

所以∠AOE= -∠BOE = °

【答案】(1)COE ,COE ,90°(2)DOE ,25°,AOB ,155°

【解析】

(1)根據(jù)角平分線的定義得到∠COD=AOC,∠COE=BOC,然后再根據(jù)角的和差關(guān)系可得答案;

(2)先算出∠BOE的度數(shù),再利用180°-∠BOE的度數(shù)可得答案

解:(1)∵OD是∠AOC的平分線,

∴∠COD =AOC

OE是∠BOC 的平分線,

COE=BOC

∴∠DOE=COD+COE=(∠AOC+BOC=AOB= 90°

2)由(1)可知∠BOE=COE =DOE-∠COD=25°.

∴∠AOE= AOB -∠BOE =155°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個長為 ,寬為 的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個回形正方形(如圖2).

1)圖2中的陰影部分的面積為

2)觀察圖2請你寫出 ,, 之間的等量關(guān)系是

3)根據(jù)(2)中的結(jié)論,若 ,則

4)實(shí)際上我們可以用圖形的面積表示許多恒等式,下面請你設(shè)計一個幾何圖形來表示恒等式.在圖形上把每一部分的面積標(biāo)寫清楚.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P(1,0).點(diǎn)P第1次向上跳動1個單位至點(diǎn)P1(1,1),緊接著第2次向左跳動2個單位至點(diǎn)P2(-1,1),第3次向上跳動1個單位至點(diǎn)P3,第4次向右跳動3個單位至點(diǎn)P4,第5次又向上跳動1個單位至點(diǎn)P5,第6次向左跳動4個單位至點(diǎn)P6,…….照此規(guī)律,點(diǎn)P第100次跳動至點(diǎn)P100的坐標(biāo)是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將平行四邊形ABCD折疊,使頂點(diǎn)D恰落在AB邊上的點(diǎn)M處,折痕為AN,那么下列說法不正確的是(  )

A. MNBCB. MNAMC. ANBCD. BMCN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB、C是數(shù)軸上的三點(diǎn),點(diǎn)C表示的數(shù)是6,點(diǎn)B與點(diǎn)C之間的距離是4,點(diǎn)B與點(diǎn)A的距離是12,點(diǎn)P為數(shù)軸上一動點(diǎn).

1)數(shù)軸上點(diǎn)A表示的數(shù)為   .點(diǎn)B表示的數(shù)為   ;

2)數(shù)軸上是否存在一點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離和為16,若存在,請求出此時點(diǎn)P所表示的數(shù);若不存在,請說明理由;

3)點(diǎn)P以每秒1個單位長度的速度從C點(diǎn)向左運(yùn)動,點(diǎn)Q以每秒2個單位長度從點(diǎn)B出發(fā)向左運(yùn)動,點(diǎn)R從點(diǎn)A以每秒5個單位長度的速度向右運(yùn)動,它們同時出發(fā),運(yùn)動的時間為t秒,請求點(diǎn)P與點(diǎn)Q,點(diǎn)R的距離相等時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1的一張紙條,按圖,把這一紙條先沿折疊并壓平,再沿折疊并壓平,若圖3,則圖2的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】補(bǔ)全解答過程:

已知:如圖,直線,直線與直線分別交于點(diǎn),;平分,.求的度數(shù).

解:交于點(diǎn),(已知)

.(_______________

,(已知)

.(______________

,交于點(diǎn),,(已知)

_____________

_______

平分,(已知)

_______.(角平分線的定義)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個頂點(diǎn),與y軸相交于(0, ),點(diǎn)A坐標(biāo)為(-1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對稱點(diǎn),點(diǎn)C在x軸的正半軸上.

(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)F為線段AC上一動點(diǎn),過點(diǎn)F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為點(diǎn)E,G,當(dāng)四邊形OEFG為正方形時,求出點(diǎn)F的坐標(biāo);
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時停止運(yùn)動,設(shè)平移的距離為t,正方形的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面上,將邊長相等的正三角形、正方形、正五邊形、正六邊形的一邊重合并疊在一起,如圖,則∠3+∠1﹣∠2=

查看答案和解析>>

同步練習(xí)冊答案