12.下列各式運(yùn)算正確的是( 。
A.a2+a3=a5B.a2•a3=a6C.(a23=a6D.a0=1

分析 根據(jù)合并同類項(xiàng),冪的乘方與積的乘方,以及同底數(shù)冪的乘法法則判斷即可.

解答 解:A、a2與a3不是同類項(xiàng),不能合并,錯(cuò)誤;
B、a2•a3=a5,錯(cuò)誤;
C、(a23=a6,正確;
D、a0=1(a≠0),錯(cuò)誤;
故選C.

點(diǎn)評(píng) 此題考查了合并同類項(xiàng),冪的乘方與積的乘方,以及同底數(shù)冪的乘法,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.響應(yīng)政府“節(jié)能”號(hào)召,我市華強(qiáng)照明公司減少了白熾燈的生產(chǎn)數(shù)量,引進(jìn)新工藝生產(chǎn)一種新型節(jié)能燈,已知這種節(jié)能燈的出廠價(jià)為每個(gè)10元.某商場(chǎng)試銷發(fā)現(xiàn),銷售單價(jià)定為15元/個(gè),每月銷售量為350個(gè);每漲價(jià)1元,每月少賣10個(gè).
(1)求出每月銷售量y(個(gè))與銷售單價(jià)x(元)之間的函數(shù)關(guān)系,并寫出自變量的取值范圍;
(2)設(shè)該商場(chǎng)每月銷售這種節(jié)能燈獲得的利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,點(diǎn)E是正方形ABCD的邊DC上的一點(diǎn),在AC上找一點(diǎn)P,使PD+PE的值最小,這個(gè)最小值等于線段( 。┑拈L(zhǎng)度.
A.ABB.ACC.BPD.BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,點(diǎn)B、E、C、F在同一直線上,AC與DE相交于點(diǎn)G,∠A=∠D,AC∥DF,求證:AB∥DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,線段AB=10,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度,沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí),另一個(gè)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位的速度在線段AB上來(lái)回運(yùn)動(dòng)(從點(diǎn)B向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A后,立即原速返回,再次到達(dá)B點(diǎn)后立即調(diào)頭向點(diǎn)A運(yùn)動(dòng).) 當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí),P,Q兩點(diǎn)都停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x.
(1)當(dāng)x=3時(shí),線段PQ的長(zhǎng)為2.
(2)當(dāng)P,Q兩點(diǎn)第一次重合時(shí),求線段BQ的長(zhǎng).
(3)是否存在某一時(shí)刻,使點(diǎn)Q恰好落在線段AP的中點(diǎn)上?若存在,請(qǐng)求出所有滿足條件的x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,二次函數(shù)的圖象與x軸交于A(-3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn)B、D.
(1)求二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知關(guān)于x的方程kx=11-x有正整數(shù)解,則整數(shù)k的值為0或10.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在平面直角坐標(biāo)系中,反比例函數(shù)y=$\frac{-3}{x}$的圖象的兩支分別位于( 。
A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如果x的一元二次方程kx2-$\sqrt{2k+1}$x+1=0有兩個(gè)不相等的實(shí)數(shù)根
(1)求k的取值范圍;
(2)若x${\;}_{1}^{2}$+x${\;}_{2}^{2}$=9,求實(shí)數(shù)k的值;
(3)若拋物線y=kx2-$\sqrt{2k+1}$x+1(k≠-$\frac{3}{8}$)過(guò)點(diǎn)(4,-7),若P(a,y1)、Q(1,y2)是此拋物線上的兩點(diǎn),且y1>y2,請(qǐng)結(jié)合函數(shù)圖象確定實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案