【題目】如圖,正方形的邊長(zhǎng)為6,是邊上的一點(diǎn),繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到.三點(diǎn)在同一直線上.
(1)求四邊形的面積.
(2)如果點(diǎn)在邊上,且,試判斷之間有什么樣的數(shù)量關(guān)系?并說(shuō)明理由.
(3)在(2)的條件下,若,求的長(zhǎng).
【答案】(1)36;(2)GE=DG+BE,理由見(jiàn)解析;(3)的長(zhǎng)為3.
【解析】
(1)由旋轉(zhuǎn)的性質(zhì)得△ABE≌△ADF,進(jìn)而得出S四邊形AECF=S正方形ABCD,計(jì)算即可;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠GAF=45°,然后利用SAS證明△AGE≌△AGF,得到GE=GF,等量代換即可求出GE=DG+BE;
(3)設(shè)DG=x,求出CG=6-x,EC=4,GE=x+2,然后在Rt△CEG中利用勾股定理構(gòu)建方程,求出x即可.
解:(1)由旋轉(zhuǎn)的性質(zhì)得:△ABE≌△ADF,
∴,
∴S四邊形AECF=S四邊形AECD+S△ADF=S四邊形AECD+S△ABE=S正方形ABCD=6×6=36;
(2)GE=DG+BE,
理由:由旋轉(zhuǎn)的性質(zhì)得:AE=AF,BE=DF,∠BAE=∠DAF,
在正方形ABCD中,∠BAD=90°,
∵∠GAE=45°,
∴∠BAE+∠GAD=45°,
∴∠DAF+∠GAD=45°,即∠GAF=45°,
在△AGE和△AGF中,,
∴△AGE≌△AGF(SAS),
∴GE=GF,
∵GF=DG+DF,BE=DF,
∴GE=DG+BE;
(3)設(shè)DG=x,則CG=6-x,
∵BE=DF=2,
∴EC=6-2=4,GE=GF=x+2,
在Rt△CEG中,∵EC2+CG2=GE2,
∴,
解得:x=3,
即的長(zhǎng)為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點(diǎn)為點(diǎn)D,其圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為﹣1和3,給出下列結(jié)論:①2a﹣b=0;②a+b+c<0;③3a+c=0;④當(dāng)a=時(shí),△ABD是等腰直角三角形.其中,正確的結(jié)論有( )
A.①②③B.③④C.②③④D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,(圖1,圖2),四邊形ABCD是邊長(zhǎng)為4的正方形,點(diǎn)E在線段BC上,∠AEF=90°,且EF交正方形外角平分線CP于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)N, FN⊥BC.
(1)若點(diǎn)E是BC的中點(diǎn)(如圖1),AE與EF相等嗎?
(2)點(diǎn)E在BC間運(yùn)動(dòng)時(shí)(如圖2),設(shè)BE=x,△ECF的面積為y。
①求y與x的函數(shù)關(guān)系式;
②當(dāng)x取何值時(shí),y有最大值,并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形 ABCD是菱形,BC∥x 軸.AD 與 y軸交于點(diǎn) E,反比例函數(shù) y=(x>0)的圖象經(jīng)過(guò)頂點(diǎn) C、D,已知點(diǎn) C的橫坐標(biāo)為5,BE=2DE,則 k的值為( )
A.B.C.D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù) y=ax2+bx 的圖象與 x 軸交于點(diǎn) O(0,0)和 點(diǎn) B,拋物線的對(duì)稱軸是直線 x=3.點(diǎn) A 是拋物線在第一象限上的一個(gè)動(dòng)點(diǎn), 過(guò)點(diǎn) A 作 AC⊥x 軸,垂足為 C.S△AOB=3S△ABC,AC2=OCBC.
(1)求該二次函數(shù)的解析式;
(2)拋物線的對(duì)稱軸與 x 軸交于點(diǎn) M.連接 AM,點(diǎn) N 是線段 OA 上的一點(diǎn).當(dāng) ∠AMN=∠AOM 時(shí),求點(diǎn) N 的坐標(biāo);
(3)點(diǎn) P 是拋物線上的一個(gè)動(dòng)點(diǎn).點(diǎn) Q 是 y 軸上的一動(dòng)點(diǎn).當(dāng)以 A,B,P,Q 四個(gè)點(diǎn)為頂點(diǎn)的四邊形為平行四邊形時(shí),直接寫出點(diǎn) P 坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著第27屆信陽(yáng)茶文化節(jié)發(fā)布會(huì)、固始西九華山第三屆郁金香風(fēng)情文化節(jié)等系列活動(dòng)的成功舉辦,越來(lái)越多的游客想要到信陽(yáng)游玩小明所在的公司想在五一黃金周期間組織員工去信陽(yáng)游玩,咨詢了甲、乙兩家旅行社,兩家旅行社分別推出優(yōu)惠方案(未推出優(yōu)惠方案前兩家旅行社的收費(fèi)標(biāo)準(zhǔn)相同).甲:購(gòu)買一張團(tuán)體票,然后個(gè)人票打六折優(yōu)惠;乙:不購(gòu)買團(tuán)體票,當(dāng)團(tuán)體人數(shù)超過(guò)一定數(shù)量后超過(guò)部分的個(gè)人票打折優(yōu)惠,優(yōu)惠期間,公司的員工人數(shù)為x(人),在甲旅行社所需總費(fèi)用為(元),在乙旅行社所需總費(fèi)用為(元).、與x之間的函數(shù)關(guān)系如圖所示.
(1)甲旅行社團(tuán)體票是______元,乙旅行社團(tuán)體人數(shù)超過(guò)一定數(shù)量后,個(gè)人票打______折;
(2)求、關(guān)于x的函數(shù)表達(dá)式;
(3)請(qǐng)說(shuō)明小明所在的公司選擇哪個(gè)旅行社出游更劃算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣2x+b與反比例函數(shù)y=的圖象有兩個(gè)交點(diǎn)A(m,3)和B,且一次函數(shù)y=﹣2x+b與x軸、y軸分別交于點(diǎn)C、D.過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E;過(guò)點(diǎn)B作BF⊥y軸于點(diǎn)F,點(diǎn)F的坐標(biāo)為(0,﹣2),連接EF,tan∠FEO=2.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求四邊形AEFD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)A(-1,0),B(3,0)與點(diǎn)C(0,3),連接BC,點(diǎn)P是直線BC是上方的一個(gè)動(dòng)點(diǎn)(且不與B,C重合).
(1)求拋物線的解析式;
(2)求△PBC的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC是等邊三角形,點(diǎn)D是△ABC(包含邊界)平面內(nèi)一點(diǎn),連接CD,將線段CD繞C逆時(shí)針旋轉(zhuǎn)60°得到線段CE,連接BE,DE,AD,并延長(zhǎng)AD交BE于點(diǎn)P.
(1)觀察填空:當(dāng)點(diǎn)D在圖1所示的位置時(shí),填空:
①與△ACD全等的三角形是______.
②∠APB的度數(shù)為______.
(2)猜想證明:在圖1中,猜想線段PD,PE,PC之間有什么數(shù)量關(guān)系?并證明你的猜想.
(3)拓展應(yīng)用:如圖2,當(dāng)△ABC邊長(zhǎng)為4,AD=2時(shí),請(qǐng)直接寫出線段CE的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com