【題目】如圖,某考察船在某海域進行科考活動,在點A測得小島C在它的東北方向上,它沿南偏東37°方向航行了2海里到達點B處,又測得小島C在它的北偏東23°方向上.

1)求∠C的度數(shù);

2)求該考察船在點B處與小島C之間的距離.(精確到0.1海里)

(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.401.41,1.73

【答案】122°;(25.25.

【解析】

1)由已知方位角,根據(jù)平行線的性質(zhì)、角的和差關系及三角形的內(nèi)角和定理可得∠CAB、∠ABC、∠C的度數(shù).

2)過點AAMBC,構造直角ABM和直角CAM,利用直角三角形的邊角關系,可求出線段AM、CMBM的長,從而問題得解.

解:(1)過點AAMBC,垂足為M

由題意知:AB2海里,∠NAC=∠CAE45°

SAB37°,∠DBC23°

∵∠SAB37°,DBAS,

∴∠DBA37°,∠EAB90°﹣∠SAB53°

∴∠ABC=∠ABD+DBC37°+23°60°,

CAB=∠EAB+CAE53°+45°98°

∴∠C180°﹣∠CAB﹣∠ABC180°98°60°22°

2)在RtAMB中,∵AB2海里,∠ABC60°,

BM1海里,AM海里.

RtAMC中,tanC

CM4.25(海里)

CBCM+BM4.25+15.25(海里)

答:考察船在點B處與小島C之間的距離為5.25海里.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點O為坐標原點,直線xy軸分別交于點A,B兩點,直線y=2x+3m軸分別交于兩點,兩直線交于點E,點P在射線CA上,點Q在射線AE上,分別連接交于點F,且

1)若點E的橫坐標為,求的值

2)當時,過點P于點M,過點E于點N,求證:

3)在(1)的條件下,當時,過點PAB于點G,點K在射線CQ上,射線EK交直線于點L,射線交直線于點R,連接,當時,求KLR到的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鐘南山院士在談到防護新型冠狀病毒肺炎時說:我們需要重視防護,但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內(nèi)注意通風,勤洗手,多運動,少熬夜.某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷(滿分100分),社區(qū)管理員隨機從甲、乙兩個小區(qū)各抽取20名人員的答卷成績,并對他們的成績(單位:分)進行統(tǒng)計、分析,過程如下:

收集數(shù)據(jù)

甲小區(qū):80 85 90 95 90 95 90 65 75 100 90 70 95 90 80 80 90 95 60 100

乙小區(qū):60 80 95 80 90 65 80 85 85 100 80 95 90 80 90 70 80 90 75 100

整理數(shù)據(jù)

成績(分)

小區(qū)

甲小區(qū)

乙小區(qū)

分析數(shù)據(jù)

數(shù)據(jù)名稱

計量小區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

甲小區(qū)

乙小區(qū)

應用數(shù)據(jù)

1)填空:=______,=______;

2)若乙小區(qū)共有1200人參與答卷,請估計乙小區(qū)成績大于90分的人數(shù);

3)社區(qū)管理人員看完統(tǒng)計數(shù)據(jù),認為甲小區(qū)對新型冠狀病毒肺炎防護知識掌握更好,請你寫出社區(qū)管理人員的理由;為了更好地宣傳新型冠狀病毒肺炎防護知識,社區(qū)管理人員決定從甲、乙小區(qū)的4個滿分試卷中隨機抽取兩份試卷對小區(qū)居民進行網(wǎng)絡宣傳講解培訓,請用列表格或畫樹狀圖的方法求出甲、乙小區(qū)各抽到一份滿分試卷的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,A,B兩點的縱坐標分別為4,2,反比例函數(shù)yx0)的圖象經(jīng)過A,B兩點,若菱形ABCD的面積為2,則k的值為( 。

A. 2B. 3C. 4D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某報社為了解溫州市民對大范圍霧霾天氣的成因、影響以及應對措施的看法,做了一次抽樣調(diào)查,調(diào)查結果共分為四個等級:A.非常了解:B.比較了解:C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計結果,繪制了不完整的三種統(tǒng)計圖表.請結合統(tǒng)計圖表,回答下列問題:

對霧霾的了解程度

百分比

A

非常了解

5%

B

比較了解

m%

C

基本了解

45%

D

不了解

n%

1)本次參與調(diào)查的市民共有________人,m=________,n=________

2)統(tǒng)計圖中扇形D的圓心角是________.

3)某校準備開展關于霧霾的知識競賽,九(3)班鄭老師欲從2名男生和1名女生中任選2人參加比賽,求恰好選中“11的概率(要求列表或畫樹狀圖).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長CD3cm.動點P從點AB發(fā),以cm/s的速度沿AC方向運動到點C停止. 動點Q同時從點A出發(fā),以1cm/s的速度沿折線AB→BC方向運動到點C停止.設△APQ的面積為y(cm2),運動時間為x(s),則下列圖象能反映yx之間關系的是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某寶網(wǎng)店銷售甲、乙兩種電器,已知甲種電器每個的售價比乙種電器多60元,馬老師從該網(wǎng)店購買了3個甲種電器和2個乙種電器,共花費780元.

(1)該店甲、乙兩種電器每個的售價各是多少元?

(2)根據(jù)銷售情況,店主決定用不少于10800元的資金購進甲、乙兩種電器,這兩種電器共100個,已知甲種電器每個的進價為150元,乙種電器每個的進價為80元.若所購進電器均可全部售出,請求出網(wǎng)店所獲利潤W()與甲種電器進貨量m()之間的函數(shù)關系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司銷售甲、乙兩種品牌的投影儀,這兩種投影儀的進價和售價如下表所示:

進價(元/套)

3000

2400

售價(元/套)

3300

2800

該公司計劃購進兩種投影儀若干套,共需66000元,全部銷售后可獲毛利潤9000元.

1)該公司計劃購進甲、乙兩種品牌的投影儀各多少套?

2)通過市場調(diào)研,該公司決定在原計劃的基礎上,減少甲種投影儀的購進數(shù)量,增加乙種投影儀的購進數(shù)量,已知乙種投影儀增加的數(shù)量是甲種投影儀減少的數(shù)量的2倍。若用于購進這兩種投影儀的總資金不超過75000元,問甲種投影儀購進數(shù)量至多減少多少套?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一次射擊訓練中甲、乙兩人的10次射擊成績的分布情況,則射擊成績的方差較小的是_____(填“甲”或“乙”)

查看答案和解析>>

同步練習冊答案