【題目】如圖,在△ABC中,AB=AC,AD是BC邊上的中線,以AD為直徑作⊙O,連接BO并延長至點E,使得OE=OB,交⊙O于點F,連接AE,CE.
(1)求證:AE是⊙O的切線;
(2)求證:四邊形ADCE是矩形;
(3)若BD= AD=4,求陰影部分的面積.

【答案】
(1)證明:∵AB=AC,AD是BC邊上的中線,

∴∠ODB=90°,

在△BOD和△EOA中,

,

∴△BOD≌△EOA,

∴∠OAE=∠ODB=90°,

∵點A在圓上,

∴AE是⊙O的切線;


(2)由(1)知,△BOD≌△EOA,

∴BD=AE,

∵AD是BC邊上的中線,

∴CD=BD,

∴AE=CD,

∵∠OAE=∠ODB=90°,

∴AE∥BC,

∴四邊形ADCE是平行四邊形

∵∠OAE=90°,

∴平行四邊形ADCE是矩形;


(3)解:∵∠ODB=90°,BD=OD,

∴∠BOD=45°,

∴∠AOE=45°

∵∠OAE=90°,

∴AE=OA= AD=4

∴SOAE= ×OA×AE= ×4×4=8,

S扇形OAF=π×42× =2π,

∴S陰影部分=SOAE﹣S扇形OAF=8﹣2π.


【解析】(1)利用等腰三角形的三線合一的性質(zhì),得出∠ODB=90°,從而得出△BOD≌△EOA,得出∠OAE=∠ODB=90°,即可;(2)利用(1)△BOD≌△EOA和三角形的中線得出結(jié)論;(3)先判斷出AE=OA=4,陰影部分面積用三角形OAE的面積減去扇形OAF的面積即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形ABCD的對角線相交于點O,M、N分別是OD、OC上異于O、C、D的點.
(1)請你在下列條件①DM=CN,②OM=ON,③MN是△OCD的中位線,④MN∥AB中任選一個添加條件(或添加一個你認為更滿意的其他條件),使四邊形ABNM為等腰梯形,你添加的條件是
(2)添加條件后,請證明四邊形ABNM是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把邊長為3的正方形ABCD繞點A順時針旋轉(zhuǎn)45°得到正方形AB′C′D′,邊BC與D′C′交于點O,則四邊形ABOD′的周長是(
A.
B.6
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在綜合實踐課上,小聰所在小組要測量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點A處用測角儀測得河對岸小樹C位于東北方向,然后沿河岸走了30米,到達B處,測得河對岸電線桿D位于北偏東30°方向,此時,其他同學測得CD=10米.請根據(jù)這些數(shù)據(jù)求出河的寬度.(精確到0.1)(參考數(shù)據(jù): ≈1.414, ≈1.132)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx﹣2(k>0)與雙曲線 在第一象限內(nèi)的交點R,與x軸、y軸的交點分別為P、Q.過R作RM⊥x軸,M為垂足,若△OPQ與△PRM的面積相等,則k的值等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=﹣x+1與反比例函數(shù) ,x與y的對應值如下表:

x

﹣3

﹣2

﹣1

1

2

3

y=﹣x+1

4

3

2

0

﹣1

﹣2

1

2

﹣2

﹣1

不等式﹣x+1>﹣ 的解為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(1,0)、B(0,3)兩點,對稱軸是x=﹣1
(1)求拋物線對應的函數(shù)關系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OM上運動,同時動點M從M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,直接寫出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個數(shù)字游戲:將1,2,3,4,5,6,7,8,9這九個數(shù)字分別填在如圖所示的九個空格中,要求每一行從左到右的數(shù)字逐漸增大,每一列從上到下的數(shù)字也逐漸增大.當數(shù)字3和4固定在圖中所示的位置時,x代表的數(shù)字是 , 此時按游戲規(guī)則填寫空格,所有可能出現(xiàn)的結(jié)果共有種.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校社團活動開設的體育選修課有:籃球(A),足球(B),排球(C),羽毛球(D),乒乓球(E),每個學生選修其中的一門,學校對某班全班同學的選課情況進行調(diào)查統(tǒng)計后制成了以下兩個統(tǒng)計圖.

(1)請你求出該班的總?cè)藬?shù),并補全頻數(shù)分布直方圖;
(2)該班的其中某4個同學,1人選修籃球(A),2人選修足球(B),1人選修排球(C).若要從這4人中選2人,請你用列表或畫樹狀圖的方法,求選出的2人恰好1人選修籃球,1人選修足球的概率.

查看答案和解析>>

同步練習冊答案