【題目】小吳家準備購買一臺電視機,小吳將收集到的某地區(qū)A、B、C三種品牌電視機銷售情況的有關數(shù)據(jù)統(tǒng)計如下:
根據(jù)上述三個統(tǒng)計圖,請解答:
(1)2014~2019年三種品牌電視機銷售總量最多的是 品牌,月平均銷售量最穩(wěn)定的是 品牌.
(2)2019年其他品牌的電視機年銷售總量是多少萬臺?
(3)貨比三家后,你建議小吳家購買哪種品牌的電視機?說說你的理由.
【答案】(1)B, C;(2)2019年其他品牌的電視機年銷售總量是115.2萬臺;(3)建議購買C品牌(建議購買B品牌),理由見解析
【解析】
(1)從條形統(tǒng)計圖、折線統(tǒng)計圖可以得出答案;
(2)求出總銷售量,“其它”的所占的百分比;
(3)從市場占有率、平均銷售量等方面提出建議.
解:(1)由條形統(tǒng)計圖可得,2014~2019年三種品牌電視機銷售總量最多的是B品牌,是1746萬臺;
由條形統(tǒng)計圖可得,2014~2019年三種品牌電視機月平均銷售量最穩(wěn)定的是C品牌,比較穩(wěn)定,極差最;
故答案為:B,C;
(2)∵20×12÷25%=960(萬臺),1﹣25%﹣29%﹣34%=12%,
∴960×12%=115.2(萬臺);
答:2019年其他品牌的電視機年銷售總量是115.2萬臺;
(3)建議購買C品牌,因為C品牌2019年的市場占有率最高,且5年的月銷售量最穩(wěn)定;
建議購買B品牌,因為B品牌的銷售總量最多,受到廣大顧客的青睞.
科目:初中數(shù)學 來源: 題型:
【題目】某單位750名職工積極參加向貧困地區(qū)學校捐書活動,為了解職工的捐數(shù)量,采用隨機抽樣的方法抽取30名職工作為樣本,對他們的捐書量進行統(tǒng)計,統(tǒng)計結果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,由圖中給出的信息解答下列問題:
(1)補全條形統(tǒng)計圖;
(2)求這30名職工捐書本數(shù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)估計該單位750名職工共捐書多少本?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=BC=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF.
(1)若∠ADC=80°,求∠ECF;
(2)求證:∠ECF=∠CEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知OT是Rt△ABO斜邊AB上的高線,AO=BO.以O為圓心,OT為半徑的圓交OA于點C,過點C作⊙O的切線CD,交AB于點D.則下列結論中錯誤的是( 。
A.DC=DTB.AD=DTC.BD=BOD.2OC=5AC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系xOy中,拋物線y=﹣x2+bx+c(c>0)的頂點為D,與y軸的交點為C.過點C的直線CA與拋物線交于另一點A(點A在對稱軸左側),點B在AC的延長線上,連結OA,OB,DA和DB.
(1)如圖1,當AC∥x軸時,
①已知點A的坐標是(﹣2,1),求拋物線的解析式;
②若四邊形AOBD是平行四邊形,求證:b2=4c.
(2)如圖2,若b=﹣2,=,是否存在這樣的點A,使四邊形AOBD是平行四邊形?若存在,求出點A的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是由七根連桿鏈接而成的機械裝置,圖2是其示意圖.已知O,P兩點固定,連桿PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P兩點間距與OQ長度相等.當OQ繞點O轉動時,點A,B,C的位置隨之改變,點B恰好在線段MN上來回運動.當點B運動至點M或N時,點A,C重合,點P,Q,A,B在同一直線上(如圖3).
(1)點P到MN的距離為_____cm.
(2)當點P,O,A在同一直線上時,點Q到MN的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板和一張對邊平行的紙條按如圖的方式擺放,∠A=∠DEF=90°,∠EDF=45°,∠ABC=30°,點E,F均在邊AB上,點D在紙條的一邊上,若邊BC與紙條的另一邊重合,則∠α的度數(shù)是( 。
A.15°B.22.5°C.30°D.45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:AB為⊙O的直徑,C、D為心⊙O上的點,C是優(yōu)弧AD的中點,CE⊥DB交DB的延長線于點E.
(1)如圖1,判斷直線CE與⊙O的位置關系,并說明理由.
(2)如圖2,若tan∠BCE=,連BC、CD,求cos∠BCD的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com