【題目】(1);
(2);
(3)先化簡,再求值,其中與互為相反數(shù).
【答案】(1) (2)8(3)-6
【解析】
(1)原式先計算乘方運算和絕對值,再計算乘除運算,最后算加減運算即可得到結(jié)果;
(2)原式利用除法法則變形,再利用乘法分配律計算即可得到結(jié)果;
(3)原式去括號合并得到最簡結(jié)果,根據(jù)已知條件求出a、b的值,再把a與b的值代入最簡結(jié)果,計算即可求出值.
解:(1)
=-8-0.5××(2-9)
=-8-0.5××(-7)
=-8+
=-;
(2)
=
=()()
=12+16-20
=8;
(3),
=-3ab+3a2-[2b2-5ab+a2-2ab]
=-3ab+3a2-2b2+5ab-a2+2ab
=2a2-2b2+4ab
∵與互為相反數(shù).
∴+=0
∴=0,=0
∴=1,=-2
∴原式=4+2()=-6
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,點D為BC中點,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E.求證:四邊形ADCE為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件,使△ABE≌△CDF,則添加的條件不能為( )
A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點,且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若∠BAC=90°,AC平分∠EAF,且BC=8cm,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△ADE都是等腰直角三角形, ∠BAC=∠DAE=90°.
(1)如圖1,點D、E在AB、AC上,則BD,CE滿足怎樣的數(shù)量關(guān)系和位置關(guān)系?(直接寫出答案)
(2)如圖2,點D在△ABC內(nèi)部, 點E在△ABC外部,連結(jié)BD, CE, 則BD,CE滿足怎樣的數(shù)量關(guān)系和位置關(guān)系?請說明理由.
(3)如圖3,點D,E都在△ABC外部,連結(jié)BD, CE, CD, EB,BD, 與CE相交于H點. 若BD=,求四邊形BCDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,某學(xué)習(xí)小組對有一內(nèi)角(∠BAD)為120°的平行四邊形ABCD,將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點始終與點C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點E,F(xiàn)(不包括線段的端點).
(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;
(2)類比發(fā)現(xiàn)
如圖2,若AD=2AB,過點C作CH⊥AD于點H,求證:AE=2FH;
(3)深入探究:在(2)的條件下,學(xué)習(xí)小組某成員探究發(fā)現(xiàn)AE+2AF= AC,試判斷結(jié)論是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形AOB中,∠AOB=90°,點C為OA的中點,CE⊥OA交 于點E,以點O為圓心,OC的長為半徑作 交OB于點D.若OA=2,則陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在以AB為直徑的半圓上,AB=4 ,AC=4,點D在線段AB上運動,點E與點D關(guān)于AC對稱,DF⊥DE,DF交EC的延長線于點F,當(dāng)點D從點A運動到點B時,線段EF掃過的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com