【題目】已知:如圖,在Rt△ACB中,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是CD的中點(diǎn),過(guò)點(diǎn)C作CF∥AB叫AE的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ADE≌△FCE;
(2)若∠DCF=120°,DE=2,求BC的長(zhǎng).

【答案】
(1)證明:∵點(diǎn)E是CD的中點(diǎn),

∴DE=CE.

∵AB∥CF,

∴∠BAF=∠AFC.

在△ADE與△FCE中,

∴△ADE≌△FCE(AAS)


(2)解:由(1)得,CD=2DE,

∵DE=2,

∴CD=4.

∵點(diǎn)D為AB的中點(diǎn),∠ACB=90°,

∴AB=2CD=8,AD=CD= AB.

∵AB∥CF,

∴∠BDC=180°﹣∠DCF=180°﹣120°=60°,

∴∠DAC=∠ACD= ∠BDC= ×60°=30°,

∴BC= AB= ×8=4


【解析】(1)先根據(jù)點(diǎn)E是CD的中點(diǎn)得出DE=CE,再由AB∥CF可知∠BAF=∠AFC,根據(jù)AAS定理可得出△ADE≌△FCE;(2)根據(jù)直角三角形的性質(zhì)可得出AD=CD= AB,再由AB∥CF可知∠BDC=180°﹣∠DCF=180°﹣120°=60°,由三角形外角的性質(zhì)可得出∠DAC=∠ACD= ∠BDC=30°,進(jìn)而可得出結(jié)論.
【考點(diǎn)精析】本題主要考查了直角三角形斜邊上的中線的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形紙片ABCD中,AD=8,AB=6,E是邊BC上的點(diǎn),將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,連接FC,當(dāng)△EFC為直角三角形時(shí),BE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.
運(yùn)動(dòng)員甲測(cè)試成績(jī)表

測(cè)試序號(hào)

1

2

3

4

5

6

7

8

9

10

成績(jī)(分)

7

6

8

7

7

5

8

7

8

7


(1)寫(xiě)出運(yùn)動(dòng)員甲測(cè)試成績(jī)的眾數(shù)和中位數(shù);
(2)在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰(shuí)更合適?為什么?(參考數(shù)據(jù):三人成績(jī)的方差分別為S2=0.8、S2=0.4、S2=0.8)
(3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球最先從甲手中傳出,第三輪結(jié)束時(shí)球回到甲手中的概率是多少?(用樹(shù)狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品每件成本10元,試銷(xiāo)階段每件產(chǎn)品的銷(xiāo)售價(jià)x(元)與產(chǎn)品的日銷(xiāo)售量y(件)之間的關(guān)系如下表

售價(jià)x(元)

15

20

25

日銷(xiāo)售量y(件)

25

20

15

若日銷(xiāo)售量y是銷(xiāo)售價(jià)x的一次函數(shù).

(1)求出日銷(xiāo)售量y(件)與銷(xiāo)售價(jià)x(元)的函數(shù)關(guān)系式;

(2)求銷(xiāo)售價(jià)定為30元時(shí),每日的銷(xiāo)售利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結(jié)論正確的是(
A.a<0,b<0,c>0
B.﹣ =1
C.a+b+c<0
D.關(guān)于x的方程x2+bx+c=﹣1有兩個(gè)不相等的實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】金橋?qū)W!翱萍俭w藝節(jié)”期間,八年級(jí)數(shù)學(xué)活動(dòng)小組的任務(wù)是測(cè)量學(xué)校旗桿AB的高,他們?cè)谄鞐U正前方臺(tái)階上的點(diǎn)C處,測(cè)得旗桿頂端A的仰角為45°,朝著旗桿的方向走到臺(tái)階下的點(diǎn)F處,測(cè)得旗桿頂端A的仰角為60°,已知升旗臺(tái)的高度BE為1米,點(diǎn)C距地面的高度CD為3米,臺(tái)階CF的坡角為30°,且點(diǎn)E、F、D在同一條直線上,求旗桿AB的高度(計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知將一副三角板(直角三角板OAB和直角三角板OCD,AOB=90°,ABO=45°,CDO=90°,COD=60°)

(1)如圖1擺放,點(diǎn)O、A、C在一直線上,則∠BOD的度數(shù)是多少?

(2)如圖2,將直角三角板OCD繞點(diǎn)O逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng),若要OB恰好平分∠COD,則∠AOC的度數(shù)是多少?

(3)如圖3,當(dāng)三角板OCD擺放在∠AOB內(nèi)部時(shí),作射線OM平分∠AOC,射線ON平分∠BOD,如果三角板OCD在∠AOB內(nèi)繞點(diǎn)O任意轉(zhuǎn)動(dòng),∠MON的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣4x﹣m2=0
(1)求證:該方程有兩個(gè)不等的實(shí)根;
(2)若該方程的兩個(gè)實(shí)數(shù)根x1、x2滿(mǎn)足x1+2x2=9,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi),如圖,在ABCD中,AB=10,AD=15,tanA= ,點(diǎn)P為AD邊上任意點(diǎn),連接PB,將PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PQ.

(1)當(dāng)∠DPQ=10°時(shí),求∠APB的大;
(2)當(dāng)tan∠ABP:tanA=3:2時(shí),求點(diǎn)Q與點(diǎn)B間的距離(結(jié)果保留根號(hào));
(3)若點(diǎn)Q恰好落在ABCD的邊所在的直線上,直接寫(xiě)出PB旋轉(zhuǎn)到PQ所掃過(guò)的面積.(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊(cè)答案