【題目】如圖,已知△ABC是面積為 的等邊三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC與DE相交于點F,則△AEF的面積等于(結果保留根號).

【答案】
【解析】解:∵△ABC∽△ADE,AB=2AD, ∴ = ,
∵AB=2AD,SABC= ,
∴SADE=
如圖,在△EAF中,過點F作FH⊥AE交AE于H,
∵∠EAF=∠BAD=45°,∠AEF=60°,
∴∠AFH=45°,∠EFH=30°,
∴AH=HF,
設AH=HF=x,則EH=xtan30°= x.
又∵SADE= ,
作CM⊥AB交AB于M,
∵△ABC是面積為 的等邊三角形,
×AB×CM=
∠BCM=30°,
設AB=2k,BM=k,CM= k,
∴k=1,AB=2,
∴AE= AB=1,
∴x+ x=1,
解得x= =
∴SAEF= ×1× =
所以答案是:

【考點精析】認真審題,首先需要了解等邊三角形的性質(等邊三角形的三個角都相等并且每個角都是60°),還要掌握相似三角形的性質(對應角相等,對應邊成比例的兩個三角形叫做相似三角形)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,立方體的六個面上標著連續(xù)的整數(shù),若相對的兩個面上所標之數(shù)的和相等.則這六個數(shù)的和為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=2x﹣2與x軸交于點A,與y軸交于點B.點C是該直線上不同于B的點,且CA=AB.

(1)寫出A、B兩點坐標;

(2)過動點P(m,0)且垂直于x軸的直線與直線AB交于點D,若點D不在線段BC上,求m的取值范圍;

(3)若直線BE與直線AB所夾銳角為45°,請直接寫出直線BE的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算或化簡:
(1) ,
(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以點O為圓心的兩個同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點M,OM的延長線與BC相交于點N.
(1)點N是線段BC的中點嗎?為什么?
(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的方格地面上,標有編號1、2、3的3個小方格地面是空地,另外6個小方格地面是草坪,除此以外小方格地面完全相同
(1)一只自由飛翔的小鳥,將隨意地落在圖中所示的方格地面上,求小鳥落在草坪上的概率;
(2)現(xiàn)準備從圖中所示的3個小方格空地中任意選取2個種植草坪,則編號為1、2的2個小方格空地種植草坪的概率是多少 (用樹狀圖或列表法求解)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】比較正五邊形與正六邊形,可以發(fā)現(xiàn)它們的相同點和不同點.例如: 它們的一個相同點:正五邊形的各邊相等,正六邊形的各邊也相等.
它們的一個不同點:正五邊形不是中心對稱圖形,正六邊形是中心對稱圖形.
請你再寫出它們的兩個相同點和不同點:
相同點:


不同點:
;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小穎和小亮上山游玩,小穎乘坐纜車,小亮步行,兩人相約在山頂?shù)睦|車終點會合.已知小亮行走到纜車終點的路程是纜車到山頂?shù)木路長的2倍.小穎在小亮出發(fā)后50min 才乘上纜車,纜車的平均速度為180m/min.設小亮出發(fā)x min后行走的路程為y m,圖中的折線表示小亮在整個行走過程中y與x的函數(shù)關系.
(1)小亮行走的總路程是m,他途中休息了min;
(2)①當50≤x≤80時,求y與x的函數(shù)關系式; ②當小穎到達纜車終點時,小亮離纜車終點的路程是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉得△A1B1C,當A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是(
A.
B.2
C.3
D.2

查看答案和解析>>

同步練習冊答案