【題目】如圖,AB表示路燈,當(dāng)身高為1.6米的小名站在離路燈1.6的D處時,他測得自己在路燈下的影長DE與身高CD相等,當(dāng)小明繼續(xù)沿直線BD往前走到E點(diǎn)時,畫出此時小明的影子,并計算此時小明的影長.

【答案】解:如圖所示:
線段EG表示小明此時的影子;
根據(jù)題意得:BD=CD=DE=EF=1.6米,AB∥CD,
∴BE=3.2米,△CDE∽△ABE,
,即 ,
解得:AB=3.2米,
同理:△FEG∽△ABG,
,即 ,
解得:EG=3.2米;
答:此時小明的影長為3.2米.

【解析】畫出圖形,根據(jù)題意得出BD=CD=DE=EF=1.6米,AB∥CD,得出BE=3.2米,△CDE∽△ABE,由相似三角形的性質(zhì)得出比例式求出AB,同理:△FEG∽△ABG,得出 ,即可得出EG的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=10,BC=8,P為AD的中點(diǎn),將△ABP沿BP翻折至△EBP(點(diǎn)A落到點(diǎn)E處),連接DE,則圖中與∠APB相等的角的個數(shù)為(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線相交于點(diǎn)O,CAB的平分線分別交BD、BCE、F,作BHAF于點(diǎn)H,分別交AC、CD于點(diǎn)G、P,連結(jié)GE、GF

1)求證:OAE≌△OBG

2)試問:四邊形BFGE是否為菱形?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種新運(yùn)算⊙:1⊙3=1×4+3=7; 3⊙(-1)=3×4-1=11;(-5)⊙4=(-5)×4+4=-16; (-4)⊙(-3)=(-4)×4-3=-19.

(1)由以上式子可知:a⊙b= ;

(2)若a⊙(-2b)=4,請計算(a-b)⊙(2a+b)的值;

(3)若[x⊙(-2)] ⊙ [(-x)⊙2]=6,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A從原點(diǎn)出發(fā)沿數(shù)軸向左運(yùn)動,同時,點(diǎn)B也從原點(diǎn)出發(fā)沿數(shù)軸向右運(yùn)動,3秒后,兩點(diǎn)相距15個單位長度.已知點(diǎn)B的速度是點(diǎn)A的速度的4倍(速度單位:單位長度/秒).

1)求出點(diǎn)A、點(diǎn)B運(yùn)動的速度,并在數(shù)軸上標(biāo)出AB兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動3秒時的位置;

2)若A、B兩點(diǎn)從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運(yùn)動,幾秒時,原點(diǎn)恰好處在點(diǎn)A、點(diǎn)B的正中間?

3)若A、B兩點(diǎn)從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運(yùn)動時,另一點(diǎn)C同時從B點(diǎn)位置出發(fā)向A點(diǎn)運(yùn)動,當(dāng)遇到A點(diǎn)后,立即返回向B點(diǎn)運(yùn)動,遇到B點(diǎn)后又立即返回向A點(diǎn)運(yùn)動,如此往返,直到B點(diǎn)追上A點(diǎn)時,C點(diǎn)立即停止運(yùn)動.若點(diǎn)C一直以20單位長度/秒的速度勻速運(yùn)動,那么點(diǎn)C從開始運(yùn)動到停止運(yùn)動,行駛的路程是多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=k1x的圖象與反比例函數(shù)y= 的圖象的一個交點(diǎn)是(2,3).
(1)求出這兩個函數(shù)的表達(dá)式;
(2)作出兩個函數(shù)的草圖,利用你所作的圖形,猜想并驗證這兩個函數(shù)圖象的另一個交點(diǎn)的坐標(biāo);
(3)直接寫出使反比例函數(shù)值大于正比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形ABCD中,動點(diǎn)F,E分別以相同的速度從D,C兩點(diǎn)同時出發(fā)向C和B運(yùn)動(任何一個點(diǎn)到達(dá)即停止),過點(diǎn)P作PM∥CD交BC于M點(diǎn),PN∥BC交CD于N點(diǎn),連接MN,在運(yùn)動過程中,則下列結(jié)論:
①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤線段MN的最小值為
其中正確的結(jié)論有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(5,0)兩點(diǎn),直線y=﹣ x+3與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是x軸上方的拋物線上一動點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點(diǎn)E′是點(diǎn)E關(guān)于直線PC的對稱點(diǎn),是否存在點(diǎn)P,使點(diǎn)E′落在y軸上?若存在,請直接寫出相應(yīng)的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,DBC邊的中點(diǎn),以AD為邊作等邊ADE.

(1)求∠CAE的度數(shù);

(2)AB邊的中點(diǎn)F,連接CF、CE,試說明四邊形AFCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案