【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)從點(diǎn)出發(fā)以1個(gè)單位長(zhǎng)度/秒的速度沿軸正半軸方向運(yùn)動(dòng),同時(shí),點(diǎn)從點(diǎn)出發(fā)以1個(gè)單位長(zhǎng)度/秒的速度沿軸負(fù)半軸方向運(yùn)動(dòng),設(shè)點(diǎn)、運(yùn)動(dòng)的時(shí)間為秒.以為斜邊,向第一象限內(nèi)作等腰,連接.下列四個(gè)說(shuō)法:
①;②點(diǎn)坐標(biāo)為;③四邊形的面積為16;④.其中正確的說(shuō)法個(gè)數(shù)有( )
A.4B.3C.2D.1
【答案】B
【解析】
根據(jù)題意,有OP=AQ,即可得到,①正確;當(dāng)時(shí),OP=OQ=4,此時(shí)四邊形PBQO是正方形,則PB=QB=OP=OQ=4,即點(diǎn)B坐標(biāo)為(4,4),②正確;四邊形PBQO的面積為:,在P、Q運(yùn)動(dòng)過(guò)程面積沒(méi)有發(fā)生變化,故③正確;由正方形PBQO的性質(zhì),則此時(shí)對(duì)角線PQ=OB,故④錯(cuò)誤;即可得到答案.
解:根據(jù)題意,點(diǎn)P與點(diǎn)Q同時(shí)以1個(gè)單位長(zhǎng)度/秒的速度運(yùn)動(dòng),
∴OP=AQ,
∵OQ+AQ=OA=8,
∴OQ+OP=8,①正確;
由題意,點(diǎn)P與點(diǎn)Q運(yùn)動(dòng)時(shí),點(diǎn)B的位置沒(méi)有變化,四邊形PBQO的面積沒(méi)有變化,
當(dāng)時(shí),如圖:
則AQ=OP=4,
∴OQ=,
∴點(diǎn)B的坐標(biāo)為:(4,4),②正確;
此時(shí)四邊形PBQO是正方形,則PB=QB=OP=OQ=4,
∴四邊形PBQO的面積為:,③正確;
∵四邊形PBQO是正方形,
∴PQ=OB,
即當(dāng)時(shí),PQ=OB,故④錯(cuò)誤;
∴正確的有:①②③,共三個(gè);
故選擇:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點(diǎn),E,F(xiàn)分別是線段BM,CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)四邊形MENF是正方形時(shí),求AD:AB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為全力助推句容建設(shè),大力發(fā)展句容旅游,某公司擬派A、B兩個(gè)工程隊(duì)共同建設(shè)某區(qū)域的綠化帶.已知A工程隊(duì)2人與B工程隊(duì)3人每天共完成310米綠化帶,A工程隊(duì)的5人與B工程隊(duì)的6人每天共完成700米綠化帶.
(1)求A隊(duì)每人每天和B隊(duì)每人每天各完成多少米綠化帶;
(2)該公司決定派A、B工程隊(duì)共20人參與建設(shè)綠化帶,若每天完成綠化帶總量不少于1480米,且B工程至少派出2人,則有哪幾種人事安排方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千克元,物價(jià)部門規(guī)定其銷售單價(jià)每千克不高于元且不低于元,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),日銷售量(千克)是銷售單價(jià)(元)的一次函數(shù),且當(dāng)時(shí),,當(dāng)時(shí),.
求與的函數(shù)解析式;
求該公司銷售該原料日獲利(元)與銷售單價(jià)(元)之間的函數(shù)解析式;
求當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為3的正方形ABCD中,點(diǎn)E、F分別在邊CD、AD上,且DE=AF=1,連接AE,BF交于點(diǎn)G,將△AED沿AE對(duì)折,得到△AEH,延長(zhǎng)AH交CD于點(diǎn)P.
(1)求證:①△AED≌△BFA;②AE⊥BF;
(2)求S四邊形DEGF;
(3)求sin∠HPE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)D坐標(biāo),并直接寫出y1>y2時(shí)x的取值范圍;
(3)動(dòng)點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用直尺和圓規(guī)作一個(gè)角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依據(jù)是( )
A.SASB.ASAC.AASD.SSS
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各數(shù):① 3.141 ② ③ ④ π ⑤ ⑥ ⑦ 0 ⑧ 0.3030030003……(相鄰兩個(gè)3之間0的個(gè)數(shù)逐次增加1)
其中有理數(shù)是___________;無(wú)理數(shù)是___________(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com