【題目】已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA中點(diǎn),點(diǎn)P在BC上以每秒1個單位的速度由C向B運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒.
(1)△ODP的面積S=________.
(2)t為何值時(shí),四邊形PODB是平行四邊形?
(3)在線段PB上是否存在一點(diǎn)Q,使得ODQP為菱形?若存在,求t的值,并求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由;
(4)若△OPD為等腰三角形,請寫出所有滿足條件的點(diǎn)P的坐標(biāo)(請直接寫出答案,不必寫過程)
【答案】(1)10;(2)5;(3)(8,4);(4)滿足條件的點(diǎn)P的坐標(biāo)為P1(3,4),P2(2.5,4),P3(2,4),P4(8,4).
【解析】
試題(1)根據(jù)三角形的面積公式即可求出△ODP的面積S;
(2)由于PB∥OD,根據(jù)平行四邊形的判定可知當(dāng)PB=OD=5時(shí),四邊形PODB是平行四邊形,再求出PC=5,從而求出t的值;
(3)根據(jù)菱形的判定,當(dāng)OD=OP=PQ=5時(shí),四邊形ODQP為菱形,在Rt△OPC中,利用勾股定理求出CP的值,進(jìn)而求出t的值及Q點(diǎn)的坐標(biāo);
(4)當(dāng)△OPD為等腰三角形時(shí),分三種情況進(jìn)行討論:①如果O為頂點(diǎn),那么OP=OD=5,②如果P為頂點(diǎn),那么PO=PD,③如果D為頂點(diǎn),那么DP=DO=5,分別做輔助線,利用勾股定理求出P點(diǎn)的坐標(biāo).
試題解析:(1)∵O為坐標(biāo)原點(diǎn),A(10,0),四邊形OABC為矩形,C(0,4),
∴OA=BC=10,OC=4,
∵點(diǎn)D是OA中點(diǎn),
∴OD=DA= OA=5,
∴△ODP的面積S= ODOC= ×5×4=10.
(2)解:∵PB∥OD,
∴當(dāng)PB=OD時(shí),四邊形PODB是平行四邊形,
∵OD=5,
∴PB=5,
∴PC=BC﹣PB=10﹣5=5,
∵點(diǎn)P在BC上以每秒1個單位的速度由C向B運(yùn)動,
∴t=5
(3)解:當(dāng)OD=OP=PQ=5時(shí),ODQP為菱形,
在Rt△OPC中,由勾股定理得:
PC= = =3,
∴t=3,CQ=CP+PQ=3+5=8,
∴Q點(diǎn)的坐標(biāo)為(8,4)
(4)解:△OPD為等腰三角形時(shí),分三種情況:
①如果O為頂點(diǎn),那么OP=OD=5,
由勾股定理可以求得PC=3,此時(shí)P1(3,4);
②如果P為頂點(diǎn),那么PO=PD,
作PE⊥OA于E,則OE=ED=2.5,此時(shí)P2(2.5,4);
③如果D為頂點(diǎn),那么DP=DO=5,
作DF⊥BC于F,由勾股定理,得PF=3,
∴P3C=5﹣3=2或P4C=5+3=8,此時(shí)P3(2,4),P4(8,4).
綜上所述,滿足條件的點(diǎn)P的坐標(biāo)為P1(3,4),P2(2.5,4),P3(2,4),P4(8,4).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在生活人們已經(jīng)離不開密碼,如取款、上網(wǎng)等都需要密碼,有一種用“因式分解”法產(chǎn)生的密碼,方便記憶.原理是:如對于多項(xiàng)式,因式分解的結(jié)果是,若取,時(shí)則各個因式的值是:,,,把這些值從小到大排列得到,于是就可以把“018162”作為一個六位數(shù)的密碼.對于多項(xiàng)式,取,時(shí),請你寫出用上述方法產(chǎn)生的密碼_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列兩則材料,回答問題,材料一:定義直線y=ax+b與直線y=bx+a互為“共同體直線”,例如,直線y=x+4與直線y=4x+l互為“共同體直線”.
材料二:對于半面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1)、P2(x2,y2),P1、P2之兩點(diǎn)間的直角距離d1(P1,p2)=|x1﹣x2|+|y1﹣y2|:例如:Q1(﹣3,1)、Q2(2.4)兩點(diǎn)間的直角距離為d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8; P0(x0,y0)為一個定點(diǎn),Q(x,y)是直線y=ax+b上的動點(diǎn),我們把d(P0,Q)的最小值叫做Po到直線y=ax+b的直角距離.
(1)計(jì)算S(﹣2,6),T(1,3)兩點(diǎn)間的直角距離d(S,T)= ,直線y=4x+3上的一點(diǎn)H(a,b)又是它的“共同體直線”上的點(diǎn),求點(diǎn)H的坐標(biāo).
(2)對于直線y=ax+b上的任意一點(diǎn)M(m,n),都有點(diǎn)N(3m,2m﹣3n)在它的“共同體直線”上,試求點(diǎn)L(10,﹣)到直線y=ax+b的直角距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在湖州創(chuàng)建國家衛(wèi)生文明城市的過程中,張輝和夏明積極參加志愿者活動,當(dāng)時(shí)有下列四個志愿者工作崗位供他們選擇:①清理類崗位:清理花壇衛(wèi)生死角;清理樓道雜物(分別用 表示)。
②宣傳類崗位:垃圾分類知識宣傳;交通安全知識宣傳(分別用 表示)。
(1)張輝同學(xué)從四個崗位中隨機(jī)選取一個報(bào)名,恰好選擇清理類崗位概率為是;
(2)若張輝和夏明各隨機(jī)從四個崗位中選一個報(bào)名,請你利用樹狀圖或列表法求出他們恰好都選擇同一個崗位的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).
(1)試作出△ABC以C為旋轉(zhuǎn)中心,沿順時(shí)針方向旋轉(zhuǎn)90°后的圖形△A1B1C;
(2)以原點(diǎn)O為對稱中心,再畫出與△ABC關(guān)于原點(diǎn)O對稱的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)有足夠多的黑白圍棋子,擺成一個“中”字,下列圖形中,第①個圖形中有4 枚黑子和4枚白子,第②個圖形中有6枚黑子和11枚白子,第③個圖形中有8枚黑子和18枚白子,…,按此規(guī)律排列,則第⑧個圖形中黑子和白子的枚數(shù)分別為( )
A.14和48
B.16和48
C.18和53
D.18和67
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),延長CE,BA交于點(diǎn)F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時(shí),寫出BC與CD的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春暖花開,市民紛紛外出踏青,某種品牌鞋專賣店抓住機(jī)遇,利用10周年店慶對其中暢銷的M款運(yùn)動鞋進(jìn)行促銷,M款運(yùn)動鞋每雙的成本價(jià)為800元,標(biāo)價(jià)為1200元.
(1)M款運(yùn)動鞋每雙最多降價(jià)多少元,才能使利潤率不低于20%;
(2)該店以前每周共售出M款運(yùn)動鞋100雙,2017年3月的一個周末,恰好是該店的10周年店慶,這個周末M款運(yùn)動鞋每雙在標(biāo)價(jià)的基礎(chǔ)上降價(jià) m%,結(jié)果這個周末賣出的M款運(yùn)動鞋的數(shù)量比原來一周賣出的M款運(yùn)動鞋的數(shù)量增加了 m%,這周周末的利潤達(dá)到了40000元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=kx和拋物線C:y=ax2+bx+1.
(Ⅰ)當(dāng)k=1,b=1時(shí),拋物線C:y=ax2+bx+1的頂點(diǎn)在直線l:y=kx上,求a的值;
(Ⅱ)若把直線l向上平移k2+1個單位長度得到直線r,則無論非零實(shí)數(shù)k取何值,直線r與拋物線C都只有一個交點(diǎn);
(i)求此拋物線的解析式;
(ii)若P是此拋物線上任一點(diǎn),過點(diǎn)P作PQ∥y軸且與直線y=2交于點(diǎn)Q,O為原點(diǎn),求證:OP=PQ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com