【題目】如圖,已知菱形ABCD中,∠BAD=60°,點(diǎn)E、F分別是AB、AD上兩個(gè)動(dòng)點(diǎn),若AE=DF,連接BF與DE相交于點(diǎn)G,連接CG,與BD相交于H。
(1)求∠BGE的大。唬2)求證:GC平分∠BGD.
【答案】(1)∠BGE=60°;(2)見解析.
【解析】
(1)由題意可證△ADB是等邊三角形,可得AD=AB=BD,∠DAB=∠ADB=∠ABD,由“SAS”可證△ADE≌△DBF,可得∠ADE=∠DBF,由三角形外角性質(zhì)可求∠BGE的大;
(2)過點(diǎn)C作CN⊥BF于點(diǎn)N,過點(diǎn)C作CM⊥ED于點(diǎn)M,由“AAS”可證Rt△CBN≌Rt△CDM,可得CM=CN,由角平分線的性質(zhì)可得結(jié)論.
(1)∵ABCD為菱形,
∴AB=AD.
∵∠BAD=60°,
∴△ABD為等邊三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
∴∠DBG=∠ADE
∴∠EGB=∠DBG+∠BDG=∠ADE+∠BDG=∠ADB=60°
(2)如圖,過點(diǎn)C作CN⊥BF于點(diǎn)N,過點(diǎn)C作CM⊥ED于點(diǎn)M,
由(1)得∠ADE=∠DBF
∴∠CBF=60°+∠DBF
=60°+∠ADE
=∠DEB
又∠DEB=∠MDC
∴∠CBF=∠CDM
∵BC=CD,∠CBF=∠CDM,∠CMD=∠CNG=90°
∴Rt△CBN≌Rt△CDM(AAS)
∴CN=CM,且CN⊥BF,CM⊥ED
∴點(diǎn)C在∠BGD的平分線上
即GC平分∠BGD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M在線段OA和射線AC上運(yùn)動(dòng).
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)是否存在點(diǎn)M,使△OMC的面積是△OAC的面積的?若存在求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長(zhǎng)線)于點(diǎn)M、N.當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí)(如圖1),易證BM+DN=MN.
(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí)(如圖2),線段BM、DN和MN之間有怎樣的數(shù)量關(guān)系?寫出猜想.并加以證明.
(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3位置時(shí),線段BM、DN和MN之間有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)形狀,大小完全相同的含有30°,60°的三角板如圖①放置,PA,PB與直線MN重合,且三角板PAC與三角板PBD均可繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)。
(1)試說明:∠DPC=90°;
(2)如圖②,若三角板PAC的邊PA從PN處開始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)一定度數(shù),PF平分,PE平分,求。
(3)如圖③,若三角板PAC的邊PA從PN處開始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為3。/s。同時(shí)三角板PBD的邊PB從PM處開始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為2。/s,在兩個(gè)三角板旋轉(zhuǎn)過程中(PC轉(zhuǎn)到與PM重合時(shí),三角板都停止轉(zhuǎn)運(yùn)),問的值是否變化?若不變,求出其值,若變化,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形ABC中(∠C=90°),放置邊長(zhǎng)分別為3,4,x的三個(gè)正方形,則x的值為( )
A. 5 B. 6 C. 7 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校課外小組為了解同學(xué)們對(duì)學(xué)校“陽光跑操”活動(dòng)的喜歡程度,抽取部分學(xué)生進(jìn)行調(diào)查.被調(diào)查的每個(gè)學(xué)生按A(非常喜歡)、B(比較喜歡)、C(一般)、D(不喜歡)四個(gè)等級(jí)對(duì)活動(dòng)評(píng)價(jià).圖1和圖2是該小組采集數(shù)據(jù)后繪制的兩幅統(tǒng)計(jì)圖.經(jīng)確認(rèn)扇形統(tǒng)計(jì)圖是正確的,而條形統(tǒng)計(jì)圖尚有一處錯(cuò)誤且并不完整.請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)此次調(diào)查的學(xué)生人數(shù)為___;
(2)條形統(tǒng)計(jì)圖中存在錯(cuò)誤的是___(填A. B.C中的一個(gè)),并在圖中加以改正;
(3)在圖2中補(bǔ)畫條形統(tǒng)計(jì)圖中不完整的部分;
(4)如果該校有600名學(xué)生,那么對(duì)此活動(dòng)“非常喜歡”和“比較喜歡”的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人參加某項(xiàng)體育訓(xùn)練,近期五次測(cè)試成績(jī)得分情況如圖所示:
(1)分別求出兩人得分的平均數(shù);
(2)誰的方差較大?
(3)根據(jù)圖表和(1)的計(jì)算,請(qǐng)你對(duì)甲、乙兩人的訓(xùn)練成績(jī)作出評(píng)價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,王老師布置如下任務(wù):
如圖1,△ABC中,BC>AB>AC,在BC邊上取一點(diǎn)P,使∠APC=2∠ABC.
小路的作法如下,如圖2:
①作AB邊的垂直平分線,交BC于點(diǎn)P;
②連結(jié)AP.
所以,∠APC=2∠ABC.
小路的作圖依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解七年級(jí)學(xué)生的身體素質(zhì)情況,體育老師對(duì)該年級(jí)部分學(xué)生進(jìn)行了一分鐘跳繩次數(shù)的測(cè)試,并把測(cè)試成績(jī)繪制成如圖所示的頻數(shù)表和頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).
(1)參加測(cè)試的學(xué)生有多少人?
(2)求,的值,并把頻數(shù)直方圖補(bǔ)充完整.
(3)若該年級(jí)共有名學(xué)生,估計(jì)該年級(jí)學(xué)生一分鐘跳繩次數(shù)不少于次的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com