【題目】如圖,直線y=k1x+7(k1<0)與x軸交于點A,與y軸交于點B,與反比例函數(shù)y= (k2>0)的圖象在第一象限交于C、D兩點,點O為坐標(biāo)原點,△AOB的面積為 ,點C橫坐標(biāo)為1.
(1)求反比例函數(shù)的解析式;
(2)如果一個點的橫、縱坐標(biāo)都是整數(shù),那么我們就稱這個點為“整點”,請求出圖中陰影部分(不含邊界)所包含的所有整點的坐標(biāo).

【答案】
(1)解:∵當(dāng)x=0時,y=7,當(dāng)y=0時,x=﹣ ,

∴A(﹣ ,0)、B(0、7).

∴SAOB= |OA||OB|= ×(﹣ )×7= ,解得k1=﹣1.

∴直線的解析式為y=﹣x+7.

∵當(dāng)x=1時,y=﹣1+7=6,

∴C(1,6).

∴k2=1×6=6.

∴反比例函數(shù)的解析式為y=


(2)解:∵點C與點D關(guān)于y=x對稱,

∴D(6,1).

當(dāng)x=2時,反比例函數(shù)圖象上的點為(2,3),直線上的點為(2,5),此時可得整點為(2,4);

當(dāng)x=3時,反比例函數(shù)圖象上的點為(3,2),直線上的點為(3,4),此時可得整點為(3,3);

當(dāng)x=4時,反比例函數(shù)圖象上的點為(4, ),直線上的點為(4,3),此時可得整點為(4,2);

當(dāng)x=5時,反比例函數(shù)圖象上的點為(5, ),直線上的點為(5,2),此時,不存在整點.

綜上所述,符合條件的整點有(2,4)、(3,3)、(4,2)


【解析】(1)分別令x=0、y=0,求得對應(yīng)y和x的值,從而的得到點A、B的坐標(biāo),然后依據(jù)三角形的面積公式可求得k1的值,然后由直線的解析式可求得點C的坐標(biāo),由點C的坐標(biāo)可求得反比例函數(shù)的解析式;(2)由函數(shù)的對稱性可求得D(6,1),從而可求得x的值范圍,然后求得當(dāng)x=2、3、4、5時,一次函數(shù)和反比例函數(shù)對應(yīng)的函數(shù)值,從而可得到整點的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃量相比有出入表是某周的生產(chǎn)情況超產(chǎn)為正、減產(chǎn)為負(fù)

星期

增減

根據(jù)記錄可知前三天共生產(chǎn)多少輛;

產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)多少輛;

該廠實行每周計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎15元;少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個正整數(shù)能表示為兩個正整數(shù)的平方差,則稱這個正整數(shù)為智慧數(shù)(如3=22-1216=52-32,則316是智慧數(shù)).已知按從小到大的順序構(gòu)成如下數(shù)列:3,5,78,911,12,13,1516,17,19,2021,23,2425,則第2 013智慧數(shù)______.

【答案】2 687

【解析】解析:觀察數(shù)的變化規(guī)律,可知全部智慧數(shù)從小到大可按每三個數(shù)分一組,從第2組開始每組的第一個數(shù)都是4的倍數(shù),歸納可得,第n組的第一個數(shù)為4nn≥2.因為2 013÷3=671,所以第2 013智慧數(shù)是第671組中的第3個數(shù),即為4×671+3=2 687.

點睛:找規(guī)律題需要記憶常見數(shù)列

1,2,3,4……n

1,3,5,7……2n-1

2,4,6,8……2n

2,4,8,16,32……

1,4,9,16,25……

2,6,12,20……n(n+1)

一般題目中的數(shù)列是利用常見數(shù)列變形而來,其中后一項比前一項多一個常數(shù),是等差數(shù)列,列舉找規(guī)律.后一項是前一項的固定倍數(shù),則是等比數(shù)列,列舉找規(guī)律.

型】填空
結(jié)束】
19

【題目】如圖,鄭某把一塊邊長為a m的正方形的土地租給李某種植,他對李某說:我把你這塊地的一邊減少5 m,另一邊增加5 m,繼續(xù)租給你,你也沒有吃虧,你看如何”.李某一聽,覺得自己好像沒有吃虧,就答應(yīng)了.同學(xué)們,你們覺得李某有沒有吃虧?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(1)992-102×98;

(2)[x(x2y2-xy)-y(x2-x3y)]÷x2y.

【答案】(1)-195(2)2xy-2

【解析】試題分析:(1)利用平方差公式,完全平方公式簡便計算.

(2)提取公因式,化簡.

試題解析:

(1)原式=(100-1)2-(100+2)×(100-2)

=(1002-200+1)-(1002-4)=-200+5=-195.

(2)原式=[x2yxy-1)-x2y(1-xy)]÷x2y

=2x2yxy-1)÷x2y=2(xy-1)=2xy-2.

型】解答
結(jié)束】
21

【題目】1先化簡,再求值:aa-2b+a+b2,其中a=-1,b=;

2)若x2-5x=3,求(x-1)(2x-1-x+12+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(π﹣3.14)0﹣| sin60°﹣4|+( 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C(0,3),且此拋物線的頂點坐標(biāo)為M(﹣1,4).

(1)求此拋物線的解析式;
(2)設(shè)點D為已知拋物線對稱軸上的任意一點,當(dāng)△ACD與△ACB面積相等時,求點D的坐標(biāo);
(3)點P在線段AM上,當(dāng)PC與y軸垂直時,過點P作x軸的垂線,垂足為E,將△PCE沿直線CE翻折,使點P的對應(yīng)點P′與P、E、C處在同一平面內(nèi),請求出點P′坐標(biāo),并判斷點P′是否在該拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點均在格點上,點A、B的坐標(biāo)分別是A(4,3)、B(4,1),把△ABC繞點C逆時針旋轉(zhuǎn)90°后得到△A1B1C.
(1)畫出△A1B1C,直接寫出點A1、B1的坐標(biāo);
(2)求在旋轉(zhuǎn)過程中,△ABC所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,E 是直線 CD 上的一點,且 BAE=30°, 是直線 CD 上的一動點,M AP 的中點,直線 MNAP 且與 CD 交于點 N,設(shè) BAP=X°,MNE=Y°.

(1)在圖2 中,當(dāng) x=12 時,∠MNE= ;在圖 3 中,當(dāng) x=50 時,∠MNE= ;

(2)研究表明:yx之間關(guān)系的圖象如圖4所示( 不存在時,用空心點表示),請你根據(jù)圖象直接估計當(dāng) y=100 時,x=

(3)探究:當(dāng) x= 時,點 N 與點 E 重合;

(4)探究:當(dāng) x>105 時,求yx之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個銳角的和等于90°,那么我們就稱這兩個角互為余角.類似可以定義:如果兩個角的差的絕對值等于90°,那么我們就可以稱這兩個角互為垂角.例如:∠1=120°,2=30°,|1-2|=90°,則∠1和∠2互為垂角(本題中所有角都是指大于且小于180°的角).

(1)如圖O為直線AB上一點,OCAB于點OOEOD于點O請寫出圖中所有互為垂角的角:_______________________________________________________;

(2)如果一個角的垂角等于這個角的補角的,求這個角的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案