觀察下列等式:12-02=1,22-12=3,32-22=5,42-32=7…n2-(n-1)2=2n-1.將這n個等式左、右兩邊分別相加,可推導出前n個正奇數(shù)和的公式,請你推導出此公式并用推導出來的公式計算:
(1)1+3+5+7+9+…+29;
(2)5+7+9+…+31;
(3)1+3+5+…+199.
分析:由12-02=1,22-12=3,32-22=5,42-32=7…n2-(n-1)2=2n-1;1+3+4+5+7+9+…+(2n-1)=12-02+22-12+32-22+42-32+…+n2-(n-1)2=n2;由此計算方法計算得出答案即可.
解答:解:1+3+4+5+7+9+…+(2n-1)═n2;
(1)1+3+5+7+9+…+29=152=225;
(2)5+7+9+…+31=162-22=256-4=252;
(3)1+3+5+…+199=1002=10000.
點評:此題考查連續(xù)正奇數(shù)和的計算公式的推導和實際運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、觀察下列等式:12-02①,22-12②,32-22③,42-32④,…
(1)按此規(guī)律猜想出第⑦個算式;
(2)請用含自然數(shù)n的等式表示這種規(guī)律.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列等式:
1
2
+1
=
1×(
2
-1)
(
2
+1)(
2
-1)
=
2
-1
2-1
=
2
-1,
1
3
+
2
=
1×(
3
-
2
)
(
3
+
2
)(
3
-
2
)
=
3
-
2
3-2
=
3
-
2
,
同理可得:
1
4
+
3
=
4
-
3
,…
從計算結果中找出規(guī)律,并利用這一規(guī)律計算
1
2
+1
+
1
3
+
2
+
1
4
+
3
+…
1
2002
+
2001
)(
2002
+1)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•珠海)觀察下列等式:
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,

以上每個等式中兩邊數(shù)字是分別對稱的,且每個等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為“數(shù)字對稱等式”.
(1)根據上述各式反映的規(guī)律填空,使式子稱為“數(shù)字對稱等式”:
①52×
275
275
=
572
572
×25;
63
63
×396=693×
36
36

(2)設這類等式左邊兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,且2≤a+b≤9,寫出表示“數(shù)字對稱等式”一般規(guī)律的式子(含a、b),并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•市南區(qū)模擬)觀察下列等式:
①12=1;
②2+3+4=32;
③3+4+5+6+7=52;
④4+5+6+7+8+9+10=72
請你根據觀察得到的規(guī)律判斷式子1006+1007+1008+…+3016=
20112
20112

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列等式:
1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4


(1)猜想:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接寫出下列各式的結果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2009×2010
=
2009
2010
2009
2010

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1

查看答案和解析>>

同步練習冊答案