(2013•永州)如圖,已知△ABC內(nèi)接于⊙O,BC是⊙O的直徑,MN與⊙O相切,切點為A,若∠MAB=30°,則∠B=
60
60
度.
分析:由MN與⊙O相切,根據(jù)弦切角定理,即可求得∠C的度數(shù),又由BC是⊙O的直徑,根據(jù)圓周角定理,可求得∠BAC=90°,繼而求得答案.
解答:解:∵MN與⊙O相切,∠MAB=30°,
∴∠C=∠MAB=30°,
∵BC是⊙O的直徑,
∴∠BAC=90°,
∴∠B=90°-∠C=60°.
故答案為:60.
點評:此題考查了弦切角定理與圓周角定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•永州)如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,延長BN交AC于點D,已知AB=10,BC=15,MN=3
(1)求證:BN=DN;
(2)求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•永州)如圖,下列條件中能判定直線l1∥l2的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•永州)如圖,兩個反比例函數(shù)y=
4
x
和y=
2
x
在第一象限內(nèi)的圖象分別是C1和C2,設(shè)點P在C1上,PA⊥x軸于點A,交C2于點B,則△POB的面積為
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•永州)如圖,AB是⊙O的切線,B為切點,圓心在AC上,∠A=30°,D為
BC
的中點.
(1)求證:AB=BC;
(2)求證:四邊形BOCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•永州)如圖,已知二次函數(shù)y=(x-m)2-4m2(m>0)的圖象與x軸交于A、B兩點.
(1)寫出A、B兩點的坐標(坐標用m表示);
(2)若二次函數(shù)圖象的頂點P在以AB為直徑的圓上,求二次函數(shù)的解析式;
(3)在(2)的基礎(chǔ)上,設(shè)以AB為直徑的⊙M與y軸交于C、D兩點,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案