【題目】如圖,正方形的邊長為2,為的中點,是延長線上的一點,連接交于點,.
(1)求的值;
(2)如圖1,連接,在線段上取一點,使,連接,求證:;
(3)如圖2,過點作于點,在線段上取一點,使,連接,.將繞點旋轉(zhuǎn),使點旋轉(zhuǎn)后的對應(yīng)點落在邊上.請判斷點旋轉(zhuǎn)后的對應(yīng)點是否落在線段上,并說明理由.
【答案】(1)(2)見解析(3)點旋轉(zhuǎn)后的對應(yīng)點不落在線段上
【解析】
(1)設(shè),則,根據(jù)得到,故,求得,求得AF,AP的值即可求解;(2)在上截取,
證得,再利用勾股定理求出,得到,再利用平行得到,則,即可得到,故
(3)若點在上,以原點,為軸,為建立平面直角坐標系,由旋轉(zhuǎn)的性質(zhì)可得,,,求出直線解析式為:,設(shè),利用勾股定理求出,得點,由點,得出,
于是點旋轉(zhuǎn)后的對應(yīng)點不落在線段上.
(1)設(shè),
∴,
∵四邊形是正方形
∴,
∴,
∴,
即.
∴,
∴,
∴,
∴.
(2)在上截取,
∵,,,
∴,
∴,
∵,,
∴,
∵點是中點,
∴,
∴,
∵,
∴,
∴,,
∴,
∵,
∴,
∴,且,,
∴,
∴,
∴.
(3)若點在上,如圖,以原點,為軸,為建立平面直角坐標系,
∵,,
∴.
由旋轉(zhuǎn)的性質(zhì)可得,,,
∵點,點,
∴直線解析式為:,
設(shè)點,
∴,
∴,
∴點,
∵點,
∴.
∴點旋轉(zhuǎn)后的對應(yīng)點不落在線段上.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從一架水平飛行的無人機的尾端點測得正前方的橋的左端點俯角為,且,無人機的飛行高度米,橋的長度為1255米.
(1)求點到橋左端點的距離;
(2)若從無人機前端點測得正前方的橋的右端點的俯角為,求這架無人機的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學拓展課上,老師給出如下定義:如果三角形有一邊上的中線長恰好等于該邊長的1.5倍,那么稱這個三角形為“趣味三角形”.
理解:
(1)如圖1,在△ABC中,AB=AC=,BC=2,試判斷△ABC是否為“趣味三角形”,并說明理由.
(2)如圖2,已知△ABC是“趣味三角形”,AD,BE,CF分別是BC,AC,AB邊上的中線,且AD=BC,試探究BE和CF之間的位置關(guān)系.
(3)如圖3,直線l1∥l2 , l1與l2之間的距離為2,點B,C在直線l1上,點A在直線l2上,AD,BE,CF分別是△ABC的邊BC,AC,AB上的中線.若△ABC是“趣味三角形”,BC=2.求BE2+CF2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上。
(I)AB的長度等于
(II)請你在圖中找到一個點P,使得AB是∠PAC的角平分線請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已如拋物線y=-x2+3x+m,其中m為常數(shù)
(I)當拋物線經(jīng)過點(3,5)時,求該拋物線的解析式。
(II)當拋物線與直線y=x+3m只有一個交點時,求該拋物線的解析式。
(III)當0≤x≤4時,試通過m的取值范圍討論拋物線與直線y=x+2的公共點的個數(shù)的情況
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F,若BE=3,AF=5,則AC的長為( )
A. B. C. 10D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線G:有最低點。
(1)求二次函數(shù)的最小值(用含m的式子表示);
(2)將拋物線G向右平移m個單位得到拋物線G1。經(jīng)過探究發(fā)現(xiàn),隨著m的變化,拋物線G1頂點的縱坐標y與橫坐標x之間存在一個函數(shù)關(guān)系,求這個函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的圖像交于點P,結(jié)合圖像,求點P的縱坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在邊長為l的正方形網(wǎng)格中如圖所示.
①以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2.且△A1B1C位于點C的異側(cè),并表示出A1的坐標.
②作出△ABC繞點C順時針旋轉(zhuǎn)90°后的圖形△A2B2C.
③在②的條件下求出點B經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠為貫徹落實“綠水青山就是金山銀山“的發(fā)展理念,投資組建了日廢水處理量為m噸的廢水處理車間,對該廠工業(yè)廢水進行無害化處理. 但隨著工廠生產(chǎn)規(guī)模的擴大,該車間經(jīng)常無法完成當天工業(yè)廢水的處理任務(wù),需要將超出日廢水處理量的廢水交給第三方企業(yè)處理. 已知該車間處理廢水,每天需固定成本30元,并且每處理一噸廢水還需其他費用8元;將廢水交給第三方企業(yè)處理,每噸需支付12元.根據(jù)記錄,5月21日,該廠產(chǎn)生工業(yè)廢水35噸,共花費廢水處理費370元.
(1)求該車間的日廢水處理量m;
(2)為實現(xiàn)可持續(xù)發(fā)展,走綠色發(fā)展之路,工廠合理控制了生產(chǎn)規(guī)模,使得每天廢水處理的平均費用不超過10元/噸,試計算該廠一天產(chǎn)生的工業(yè)廢水量的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com