精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,C,D是直線AB上的兩點,∠1+∠2=180°,DE平分∠CDF,EFAB.

(1)猜想:CEDF是否平行?請說明理由;

(2)若∠DCE=130°,求∠DEF的度數.

【答案】(1)CEDF.理由見解析;(2)25°

【解析】

(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可得到CEDF;

(2)由平行線的性質,可得∠CDF=50°,再由角平分線的性質得到∠CDE=25°,根據兩直線平行,內錯角相等即可得到結論.

(1)CEDF.理由如下:

∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CEDF;

(2)∵CEDF,∠DCE=130°,∴∠CDF=180°﹣∠DCE=180°﹣130°=50°.

DE平分∠CDF,∴∠CDECDF=25°.

EFAB,∴∠DEF=∠CDE=25°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知關于x的分式方程

1)若方程的增根為x=1,求m的值

2)若方程有增根,求m的值

3)若方程無解,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,半圓O的直徑AB=10cm,弦AC=6cm,AD平分∠BAC,則AD的長為(
A.4 cm
B.3 cm
C.5 cm
D.4cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖△ABC 已知 AB=AC,BD 平分∠ABC,AE BC 邊的中線,AE、BD 相交于點 D,其中∠ADB=125°,∠BAC 的度數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖①,把△ABC 紙片沿 DE 折疊,使點 A 落在四邊形 BCED 的內部點 A′的位置,試說明 2∠A=∠1+∠2;

(2)如圖②,若把△ABC 紙片沿 DE 折疊,使點 A 落在四邊形 BCED 的外部點A′的位置,寫出∠A 與∠1、∠2 之間的等量關系(無需說明理由);

(3)如圖③,若把四邊形 ABCD 沿 EF 折疊,使點 A、D 落在四邊形BCFE 的內部點 A′、D′的位置,請你探索此時∠A、∠D、∠1 與∠2 之間的數量關系,寫出你發(fā)現的結論并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,∠MON=40°,OE平分∠MONA,B,C分別是射線OMOE,ON上的動點(AB,C不與點O 重合),連接AC交射線OE于點D.設∠OACx°.

(1)如圖①,若ABON,則

①∠ABO的度數是________.

②當∠BAD=∠ABD時,x=________;當∠BAD=∠BDA時,x=________.

(2)如圖②,若ABOM,則是否存在這樣的x值,使得△ADB中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(列方程(組)及不等式解應用題)

水是人類生命之源.為了鼓勵居民節(jié)約用水,相關部門實行居民生活用水階梯式計量水價政策.若居民每戶每月用水量不超過10立方米,每立方米按現行居民生活用水水價收費(現行居民生活用水水價=基本水價+污水處理費);若每戶每月用水量超過10立方米,則超過部分每立方米在基本水價基礎上加價100%,每立方米污水處理費不變.甲用戶4月份用水8立方米,繳水費27.6元;乙用戶4月份用水12立方米,繳水費46.3元.(注:污水處理的立方數=實際生活用水的立方數)

(1)求每立方米的基本水價和每立方米的污水處理費各是多少元?

(2)如果某用戶7月份生活用水水費計劃不超過64元,該用戶7月份最多可用水多少立方米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運動商城的自行車銷售量自2013年起逐月增加,據統計,該商城1月份銷售自行車64輛,3月份銷售了100輛.
(1)若該商城前4個月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車?
(2)考慮到自行車需求不斷增加,該商城準備投入3萬元再購進一批兩種規(guī)格的自行車,已知A型車的進價為500元/輛,售價為700元/輛,B型車進價為1000元/輛,售價為1300元/輛.根據銷售經驗,A型車不少于B型車的2倍,但不超過B型車的2.8倍.假設所進車輛全部售完,為使利潤最大,該商城應如何進貨?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面材料,并解答問題.

材料:將分式拆分成一個整式與一個分式(分子為整數)的和的形式.

解:由分母為﹣x2+1,可設﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)

∵對應任意x,上述等式均成立,∴,∴a=2,b=1

==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.

解答:

(1)將分式 拆分成一個整式與一個分式(分子為整數)的和的形式.

(2)試說明的最小值為8.

查看答案和解析>>

同步練習冊答案