兩圓相內(nèi)切,半徑分別為4和x,圓心距為6,則x的值是( )
A.2
B.10
C.2或10
D.無法確定
【答案】分析:本題可根據(jù)兩圓內(nèi)切得出:|4-x|=6,將方程化簡即可得出x的值.
解答:解:依題意得:|8-x|=6
即4-x=6或x-4=6
解得:x=-2(不合題意舍去)或10.
故選B.
點評:本題主要考查兩圓的位置關(guān)系.兩圓的位置關(guān)系有:外離(d>R+r)、內(nèi)含(d<R-r)、相切(外切:d=R+r或內(nèi)切:d=R-r)、相交(R-r<d<R+r).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)某學校要在圍墻旁建一個長方形的中藥材種植實習苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD.已知木欄總長為120米,設AB邊的長為x米,長方形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
(2)學校計劃將苗圃內(nèi)藥材種植區(qū)域設計為如圖所示的兩個相外切的等圓,其圓心分別為O1和O2,且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學們參觀學習.當(l)中S取得最值時,請問這個設計是否可行?若可行,求出圓的半徑;若不可行,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

兩圓相內(nèi)切,半徑分別為4和x,圓心距為6,則x的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•成都)某學校要在圍墻旁建一個長方形的中藥材種植實習苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD.已知木欄總長為120米,設AB邊的長為x米,長方形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
(2)學校計劃將苗圃內(nèi)藥材種植區(qū)域設計為如圖所示的兩個相外切的等圓,其圓心分別為O1和O2,且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學們參觀學習.當(l)中S取得最值時,請問這個設計是否可行?若可行,求出圓的半徑;若不可行,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

兩圓相內(nèi)切,半徑分別為4和x,圓心距為6,則x的值是


  1. A.
    2
  2. B.
    10
  3. C.
    2或10
  4. D.
    無法確定

查看答案和解析>>

同步練習冊答案