【題目】閱讀下面材料:

小明觀察一個由1×1正方形點(diǎn)陣組成的點(diǎn)陣圖,圖中水平與豎直方向上任意兩個相鄰點(diǎn)間的距離都是1.他發(fā)現(xiàn)一個有趣的問題:對于圖中出現(xiàn)的任意兩條端點(diǎn)在點(diǎn)陣上且互相不垂直的線段,都可以在點(diǎn)陣中找到一點(diǎn)構(gòu)造垂直,進(jìn)而求出交點(diǎn)與垂足之間的數(shù)值.

請回答:

1)如圖1,AB、C是點(diǎn)陣中的三個點(diǎn),請?jiān)邳c(diǎn)陣中找到點(diǎn)D,作出線段CD,使得CDAB;

2)如圖2,線段ABCD交于點(diǎn)O,小明在點(diǎn)陣中找到了點(diǎn)E,連接AE.恰好滿足AECDE,再作出點(diǎn)陣中的其它線段,就可以構(gòu)造相似三角形,經(jīng)過推理和計(jì)算能夠使問題得到解決.

請你幫小明計(jì)算:OC   OF   

參考小明思考問題的方法,解決問題:

3)如圖3,線段ABCD交于點(diǎn)O.在點(diǎn)陣中找到點(diǎn)E,連接AE,滿足AECDF.計(jì)算: OC   OF   

【答案】1)詳見解析;(2,;(3,

【解析】

1)利用數(shù)形結(jié)合的思想解決問題即可.

2)利用相似三角形的性質(zhì)解決問題即可.

3)構(gòu)造相似三角形解決問題即可.

1)如圖線段CD即為所求.

2)連接AC,BD

由題意AC2DB3,CD2

ACBD,

∴△ACO∽△BDO,

OCCD,

ACDE,

∴△ACF∽△EDF,

1

DFCF,

OFCFOC

故答案為,

3)如圖3中,線段AE即為所求.

連接BC,作AMBCCDM

由題意:BC1,AM2.5,CD2DFCF,CM

BCAM,

∴△BOC∽△AOM

,

OCCM

OFCFOC

故答案為,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖1,在正多邊形A1A2A3…An的邊A2A3上任取一不與點(diǎn)A2重合的點(diǎn)B2,并以線段A1B2為邊在線段A1A2的上方作以正多邊形A1B2B3…Bn,把正多邊形A1B2B3…Bn叫正多邊形A1A2…An的準(zhǔn)位似圖形,點(diǎn)A3稱為準(zhǔn)位似中心.

特例論證:(1)如圖2已知正三角形A1A2A3的準(zhǔn)位似圖形為正三角形A1B2B3,試證明:隨著點(diǎn)B2的運(yùn)動,∠B3A3A1的大小始終不變.

數(shù)學(xué)思考:(2)如圖3已知正方形A1A2A3A4的準(zhǔn)位似圖形為正方形A1B2B3B4,隨著點(diǎn)B2的運(yùn)動,∠B3A3A4的大小始終不變?若不變,請求出∠B3A3A4的大。蝗舾淖,請說明理由.

歸納猜想:(3)在圖(1)的情況下:①試猜想∠B3A3A4的大小是否會發(fā)生改變?若不改變,請用含n的代數(shù)式表示出∠B3A3A4的大。ㄖ苯訉懗鼋Y(jié)果);若改變,請說明理由.②∠B3A3A4+B4A4A5+B5A5A6+…+BnAnA1=   (用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yx軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)點(diǎn)P為線段BC上方拋物線上(不與BC重合)的一動點(diǎn),連接PCPB,當(dāng)PBC面積最大時(shí),在y軸找點(diǎn)D,使得PDOD的值最小時(shí),求這個最小值.

2)如圖2,拋物線對稱軸與x軸交于點(diǎn)K,與線段BC交于點(diǎn)M,在對稱軸上取一點(diǎn)R,使得KR12(點(diǎn)R在第一象限),連接BR.已知點(diǎn)N為線段BR上一動點(diǎn),連接MN,將BMN沿MN翻折到B'MN.當(dāng)B'MNBMR重疊部分(如圖中的MNQ)為直角三角形時(shí),直接寫出此時(shí)點(diǎn)B'的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形繞點(diǎn)旋轉(zhuǎn)至矩形位置,此時(shí)的中點(diǎn)恰好與點(diǎn)重合,于點(diǎn).,則的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)E在正方形ABCD的邊AB上,以BE為邊向正方形ABCD外部作正方形BEFG,連接DFM、N分別是DC、DF的中點(diǎn),連接MN.AB=7,BE=5,則MN=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線ACBD相交于點(diǎn)O,∠ACB的角平分線分別交ABBDM、N兩點(diǎn),若AM2,則線段ON的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場以每件20元購進(jìn)一批襯衫,若以每件40元出售,則每天可售出60件,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每漲價(jià)1元,商場平均每天可少售出2件,若設(shè)每件襯衫漲價(jià)元,回答下列問題:

1)該商場每天售出襯衫 件(用含的代數(shù)式表示);

2)求的值為多少時(shí),商場平均每天獲利1050元?

3)該商場平均每天獲利 (填不能)達(dá)到1250元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小元設(shè)計(jì)的“過圓上一點(diǎn)作圓的切線”的尺規(guī)作圖過程

已知:如圖,OO上一點(diǎn)P.

求作:過點(diǎn)PO的切線.

作法:如圖,

作射線OP;

在直線OP外任取一點(diǎn)A,以點(diǎn)A為圓心,AP為半徑作A,與射線OP交于另一點(diǎn)B;

連接并延長BAA交于點(diǎn)C

作直線PC;

則直線PC即為所求.

根據(jù)小元設(shè)計(jì)的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明:

證明: BCA的直徑,

∴∠BPC=90°(____________)(填推理的依據(jù))

OPPC

OPO的半徑,

PCO的切線(____________)(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EBC的中點(diǎn),連接DE,過點(diǎn)AAGEDDE于點(diǎn)F,交CD于點(diǎn)G

1)若BC4,求AG的長;

2)連接BF,求證:ABFB

查看答案和解析>>

同步練習(xí)冊答案