(2012•工業(yè)園區(qū)一模)如圖,A是反比例函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)A作AB⊥y軸于點(diǎn)B,點(diǎn)C、D為x軸上動(dòng)點(diǎn),若CD=3AB,四邊形ABCD的面積為4,則這個(gè)反比例函數(shù)的解析式為
y=
2
x
y=
2
x
分析:如圖,連接BD、OA.由于同底等高的兩個(gè)三角形面積相等,所以△AOB的面積=△ABD的面積=1,然后根據(jù)反比例函數(shù) y=
k
x
中k的幾何意義,知△AOB的面積=
1
2
|k|,從而確定k的值,求出反比例函數(shù)的解析式.
解答:解:設(shè)該反比例函數(shù)的解析式為y=
k
x
(k≠0,x>0),點(diǎn)A(x、y).
∵AB=x,CD=3AB,四邊形ABCD的面積為4,
∴S△BCD=3S△ABD=3S△AOB,
S△ABD=S△AOB=1,
1
2
|k|=1,
∴k=±2;
又∵反比例函數(shù)的圖象的一支位于第一象限,
∴k>0.
∴k=2.
∴這個(gè)反比例函數(shù)的解析式為y=
2
x
;
故答案為:y=
2
x
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求反比例函數(shù)的解析式和反比例函數(shù) y=
k
x
中k的幾何意義.這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•工業(yè)園區(qū)一模)如圖:二次函數(shù)y=ax2+bx+2的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),若AC⊥BC,則a的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•工業(yè)園區(qū)一模)據(jù)報(bào)道,蘇州工業(yè)園區(qū)市政物業(yè)管理有限公司通過(guò)合理劃分照明等級(jí)區(qū)域、合理控制開(kāi)閉燈時(shí)間及區(qū)域等管理方法,每年節(jié)電約400萬(wàn)度;請(qǐng)將這一數(shù)據(jù)用科學(xué)記數(shù)法表示為
4×106
4×106
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•工業(yè)園區(qū)一模)如圖,等腰△AEF的腰長(zhǎng)與菱形ABCD的邊長(zhǎng)相等,其底邊上的點(diǎn)E、F分別在BC、CD上,若∠EAF=63°,則∠B=
81
81
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•工業(yè)園區(qū)一模)如圖1,A(-1,0)、B(0,2),以AB為邊作正方形ABCD,則D點(diǎn)的坐標(biāo)(
-3
-3
1
1
).
(1)如圖2,如果將正方形ABCD沿AB翻折后得到正方形ABEF,拋物線y=ax2+ax+b經(jīng)過(guò)點(diǎn)D、F,求拋物線的解析式:
(2)如圖3,P為BD延長(zhǎng)線上一動(dòng)點(diǎn),過(guò)A、B、P三點(diǎn)作⊙O',連接AP,在⊙O'上另有一點(diǎn)Q,且AQ=AP,AQ交BD于點(diǎn)G,連接BQ.
下列結(jié)論:①BP+BQ的值不變;②
BQ
AQ
=
BG
AG
,是否成立,并就你的判斷加以說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案