【題目】如圖,的周長為36 cm,對角線相交于點cm.若點的中點,則的周長為(

A.10 cmB.15 cmC.20 cmD.30 cm

【答案】B

【解析】

根據(jù)ABCD的周長為36 可得ABBC18,根據(jù)平行四邊形的對邊相等和對角線互相平分可得OAOCAC,又因為E點是AB的中點,可得OE是△ABC的中位線,可得OEBC,進而可求△DOE的周長.

解:∵ABCD的周長為36,

2ABBC)=36,

ABBC18

∵四邊形ABCD是平行四邊形,對角線AC,BD相交于點OAC12,

OAOCAC6

又∵點EAB的中點,

OE是△ABC的中位線,AEAB,

OEBC,

∴△AOE的周長=OAOEAEACABBC)=6915

即△AOE的周長為15

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1是一種折疊式晾衣架.晾衣時,該晾衣架左右晾衣臂張開后示意圖如圖2所示,兩支腳OCOD10分米,展開角∠COD60°,晾衣臂OAOB10分米,晾衣臂支架HGFE6分米,且HOFO4分米.當∠AOC90°時,點A離地面的距離AM_______分米;當OB從水平狀態(tài)旋轉到OB′(在CO延長線上)時,點E繞點F隨之旋轉至OB′上的點E′處,則BE′﹣BE_________分米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:

動手操作:如圖1,四邊形是一張矩形紙片,,點分別在,邊上,且,連接.將,分別沿,折疊,點,分別落在點處.

探究展示:

(1)“刻苦小組”發(fā)現(xiàn):,且,并展示了如下的證明過程.

證明:在矩形中,,,.

又∵,

.

,.

,

.(依據(jù)1)

.

.(依據(jù)2)

反思交流:①上述證明過程中的“依據(jù)1”與“依據(jù)2”分別指什么?

②“勤奮小組”認為:還可以通過證明四邊形是平行四邊形獲證,請你根據(jù)“勤奮小組”的證明思路寫出證明過程.

猜想證明:

(2)如圖2,折疊過程中,當點,在直線的同側時,延長于點,延長于點,則四邊形是什么特殊四邊形?請說明理由.

聯(lián)想拓廣:

(3)如圖3,連接,.

①當時,的長為________;

的長有最大值嗎?若有,請你直接寫出長的最大值和此時四邊形的形狀;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線與直線l交于x軸上的一點A,和另一點

求拋物線的解析式;

P是拋物線上的一個動點PAB兩點之間,但不包括AB兩點于點M,軸交AB于點N,求MN的最大值;

如圖2,將拋物線繞頂點旋轉后,再作適當平移得到拋物線,已知拋物線的頂點E在第一象限的拋物線上,且拋持線與拋物線交于點D,過點D軸交拋物線于點F,過點E軸交拋物線于點G,是否存在這樣的拋物線,使得四邊形DFEG為菱形?若存在,請求E點的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y2x的圖象與反比例函數(shù)y的圖象交于點(a,2).

1)求ak的值.

2)若點Pmn)在反比例函數(shù)圖象上,且點Py軸的距離小于1,請根據(jù)圖象直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校隨機抽取部分學生就“你是否喜歡網課”進行問卷調查,并將調查結果進行統(tǒng)計后,繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.

1)在統(tǒng)計表中, , ;

2)求出扇形統(tǒng)計圖中“喜歡”網課所對應扇形的圓心角度數(shù);

3)己知該校共有2 000名學生,試估計該!胺浅O矚g”網課的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC(與點B,C不重合),四邊形ADEF為正方形,過點FFGCA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②SFABS四邊形CBFG=12;③∠ABC=ABF;④AD2=FQ·AC.其中所有正確結論的序號是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=k1x+b和反比例函數(shù)的圖象相交于點Pm1,n+1),點Q0,a)在函數(shù)y=k1x+b的圖象上,且mn是關于x的方程ax23a+1x+2a+1=0的兩個不相等的整數(shù)根(其中a為整數(shù)),求一次函數(shù)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為,動點從點出發(fā)以的速度沿著邊運動,到達點停止運動,另一動點同時從點出發(fā),以的速度沿著邊向點運動,到達點停止運動,設點運動時間為的面積為,則關于的函數(shù)圖象是()

A.B.C.D.

查看答案和解析>>

同步練習冊答案