【題目】如圖是一個(gè)兒童游樂場所,由于周末小朋友較多老板計(jì)劃將場地?cái)U(kuò)建擴(kuò)建前平面圖為ABC,BC=10,∠ABC=∠ACB=36°,擴(kuò)建后頂點(diǎn)DBA的延長線上,BDC=90°,求擴(kuò)建后AB邊增加部分AD的長.結(jié)果精確到0.1米.參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)

【答案】1.9米.

【解析】

試題過AAEBC于點(diǎn)E,在直角三角形ABE中,由BEcosB的值,利用銳角三角函數(shù)定義求出AB的長,在直角三角形BCD中,由∠ABC度數(shù),以及BC的長,利用銳角三角函數(shù)定義求出BD的長,從而即可得.

試題解析:過AAEBC于點(diǎn)E,∵ABAC,∴BEECBC5

RtABE中,cosB,∴AB ≈6.17

RtBDC中,cosB ,∴BD10×cos36°≈8.1,∴ADBDAB1.93≈1.9

故擴(kuò)建后AB邊增加部分AD的長為1.9米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是某酒店的推拉門,已知門的寬度AD=2米,兩扇門的大小相同(即AB=CD),且AB+CD=AD,現(xiàn)將右邊的門CDD1C1繞門軸DD1向外面旋轉(zhuǎn)67°(如圖2所示).

參考數(shù)據(jù):(sin67°≈0.92,cos67°≈0.39,tan29.6°≈057,tan19.6°≈0.36,sin29.6°≈0.49

1)求點(diǎn)C到直線AD的距離.

2)將左邊的門ABB1A1繞門軸AA1向外面旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為a(如圖3所示),問當(dāng)a為多少度時(shí),點(diǎn)BC之間的距離最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB=10,弦AC=8,連接BC

1)尺規(guī)作圖:作弦CD,使CD=BC(點(diǎn)D不與B重合),連接AD;(保留作圖痕跡,不寫作法)

2)在(1)所作的圖中,求四邊形ABCD的周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,連結(jié),點(diǎn)E從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿著的路徑運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒).過點(diǎn)E于點(diǎn)F,在矩形的內(nèi)部作正方形

1)如圖,當(dāng)時(shí),

①若點(diǎn)H的內(nèi)部,連結(jié)、,求證:;

②當(dāng)時(shí),設(shè)正方形的重疊部分面積為S,求St的函數(shù)關(guān)系式;

2)當(dāng),時(shí),若直線將矩形的面積分成13兩部分,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過x軸上的點(diǎn)A1,0)和點(diǎn)By軸上的點(diǎn)C,經(jīng)過B、C兩點(diǎn)的直線為

①求拋物線的解析式.

②點(diǎn)PA出發(fā),在線段AB上以每秒1個(gè)單位的速度向B運(yùn)動(dòng),同時(shí)點(diǎn)EB出發(fā),在線段BC上以每秒2個(gè)單位的速度向C運(yùn)動(dòng).當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,求t為何值時(shí),PBE的面積最大并求出最大值.

③過點(diǎn)A于點(diǎn)M,過拋物線上一動(dòng)點(diǎn)N(不與點(diǎn)BC重合)作直線AM的平行線交直線BC于點(diǎn)Q.若點(diǎn)A、MN、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定ABC≌△ADC的是( 。

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,.點(diǎn)是線段上的一點(diǎn),連結(jié),過點(diǎn),分別交、于點(diǎn)、,與過點(diǎn)且垂直于的直線相交于點(diǎn),連結(jié).給出以下四個(gè)結(jié)論:①;②若點(diǎn)的中點(diǎn),則;③當(dāng)、、、四點(diǎn)在同一個(gè)圓上時(shí),;④若,則.其中正確的結(jié)論序號是( )

A. ①②B. ①②③C. ③④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC為和點(diǎn)A'.

(1)以點(diǎn)A'為頂點(diǎn)求作A'B'C',使A'B'C'ABCSA'B'C'=4SABC;

(尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)設(shè)D、E、F分別是ABC三邊AB、BC、AC的中點(diǎn),D'E'、F'分別是你所作的A'B'C'三邊A'B'、B'C'A'C'的中點(diǎn),求證:DEFD'E'F'.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不能得出BEDF的是( 。

A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD

查看答案和解析>>

同步練習(xí)冊答案