【題目】在Rt△ABC中,∠C=90°,AC=9,BC=12,則點(diǎn)C到AB的距離是(
A.
B.
C.
D.

【答案】A
【解析】解:根據(jù)題意畫(huà)出相應(yīng)的圖形,如圖所示:

在Rt△ABC中,AC=9,BC=12,
根據(jù)勾股定理得:AB= =15,
過(guò)C作CD⊥AB,交AB于點(diǎn)D,
又SABC= ACBC= ABCD,
∴CD= = = ,
則點(diǎn)C到AB的距離是
故選A
根據(jù)題意畫(huà)出相應(yīng)的圖形,如圖所示,在直角三角形ABC中,由AC及BC的長(zhǎng),利用勾股定理求出AB的長(zhǎng),然后過(guò)C作CD垂直于AB,由直角三角形的面積可以由兩直角邊乘積的一半來(lái)求,也可以由斜邊AB乘以斜邊上的高CD除以2來(lái)求,兩者相等,將AC,AB及BC的長(zhǎng)代入求出CD的長(zhǎng),即為C到AB的距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八年級(jí)一班開(kāi)展了“讀一本好書(shū)”的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書(shū)籍的情況進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷設(shè)置了“小說(shuō)”“戲劇”“散文”“其他”四個(gè)類(lèi)型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

類(lèi)別

頻數(shù)(人數(shù))

頻率

小說(shuō)

0.5

戲劇

4

散文

10

0.25

其他

6

合計(jì)

1


根據(jù)圖表提供的信息,解答下列問(wèn)題:
(1)八年級(jí)一班有多少名學(xué)生?
(2)請(qǐng)補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計(jì)圖中“其他”類(lèi)所占的百分比;
(3)在調(diào)查問(wèn)卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類(lèi),現(xiàn)從以上四位同學(xué)中任意選出2名同學(xué)參加學(xué)校的戲劇興趣小組,請(qǐng)用畫(huà)樹(shù)狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)y=kx+b與坐標(biāo)軸分別交于點(diǎn)A(0,8)、B(8,0),動(dòng)點(diǎn) C從原點(diǎn)O出發(fā)沿OA方向以每秒1個(gè)單位長(zhǎng)度向點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)D從點(diǎn)B出發(fā)沿BO方向以每秒1個(gè)單位長(zhǎng)度向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)C、D同時(shí)出發(fā),當(dāng)動(dòng)點(diǎn)D到達(dá)原點(diǎn)O時(shí),點(diǎn)C、D停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t 秒.

(1)直接寫(xiě)出直線(xiàn)的解析式:
(2)若E點(diǎn)的坐標(biāo)為(﹣2,0),當(dāng)△OCE的面積為5 時(shí).
①求t的值;
②探索:在y軸上是否存在點(diǎn)P,使△PCD的面積等于△CED的面積?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一條長(zhǎng)為40cm的鐵絲剪成兩段,并以每一段鐵絲的長(zhǎng)度為周長(zhǎng)做成一個(gè)正方形.
(1)要使這兩個(gè)正方形的面積之和等于52cm2 , 那么這段鐵絲剪成兩段后的長(zhǎng)度分別是多少?
(2)兩個(gè)正方形的面積之和可能等于48cm2嗎?若能,求出兩段鐵絲的長(zhǎng)度;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=4cm,BC=8cm,動(dòng)點(diǎn)M從點(diǎn)D出發(fā),按折線(xiàn)DCBAD方向以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)D出發(fā),按折線(xiàn)DABCD方向以1cm/s的速度運(yùn)動(dòng)

(1)若動(dòng)點(diǎn)M、N同時(shí)出發(fā),經(jīng)過(guò)幾秒鐘兩點(diǎn)相遇?
(2)若點(diǎn)E在線(xiàn)段BC上,BE=2cm,動(dòng)點(diǎn)M、N同時(shí)出發(fā)且相遇時(shí)均停止運(yùn)動(dòng),那么點(diǎn)M運(yùn)動(dòng)到第幾秒鐘時(shí),與點(diǎn)A、E、M、N恰好能組成平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了了解員工每人所創(chuàng)年利潤(rùn)情況,公司從各部抽取部分員工對(duì)每年所創(chuàng)年利潤(rùn)情況進(jìn)行統(tǒng)計(jì),并繪制如圖1,圖2統(tǒng)計(jì)圖.

(1)將圖補(bǔ)充完整;
(2)本次共抽取員工人,每人所創(chuàng)年利潤(rùn)的眾數(shù)是 , 平均數(shù)是;
(3)若每人創(chuàng)造年利潤(rùn)10萬(wàn)元及(含10萬(wàn)元)以上位優(yōu)秀員工,在公司1200員工中有多少可以評(píng)為優(yōu)秀員工?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明乘出租車(chē)去體育場(chǎng),有兩條路線(xiàn)可供選擇:路線(xiàn)一的全程是25千米,但交通比較擁堵,路線(xiàn)二的全程是36千米,平均車(chē)速比走路線(xiàn)一時(shí)的平均車(chē)速能提高80%,因此能比走路線(xiàn)一少用10分鐘到達(dá).求小明走路線(xiàn)一時(shí)的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正△ABC的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度,沿A→B→C的方向運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為x(秒),y=PC2 , 則y關(guān)于x的函數(shù)的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠投入生產(chǎn)一種機(jī)器的總成本為2000萬(wàn)元.當(dāng)該機(jī)器生產(chǎn)數(shù)量至少為10臺(tái),但不超過(guò)70臺(tái)時(shí),每臺(tái)成本y與生產(chǎn)數(shù)量x之間是一次函數(shù)關(guān)系,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:

x(單位:臺(tái))

10

20

30

y(單位:萬(wàn)元∕臺(tái))

60

55

50


(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)求該機(jī)器的生產(chǎn)數(shù)量;
(3)市場(chǎng)調(diào)查發(fā)現(xiàn),這種機(jī)器每月銷(xiāo)售量z(臺(tái))與售價(jià)a(萬(wàn)元∕臺(tái))之間滿(mǎn)足如圖所示的函數(shù)關(guān)系.該廠生產(chǎn)這種機(jī)器后第一個(gè)月按同一售價(jià)共賣(mài)出這種機(jī)器25臺(tái),請(qǐng)你求出該廠第一個(gè)月銷(xiāo)售這種機(jī)器的利潤(rùn).(注:利潤(rùn)=售價(jià)﹣成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案