如圖,Rt△ABC中,∠C=90°,斜邊AB的垂直平分線交AB于點(diǎn)D,交BC于點(diǎn)E,AE平分∠BAC,那么下列關(guān)系式中不成立的是( )

A.∠B=∠CAE
B.∠DEA=∠CEA
C.∠B=∠BAE
D.AC=2EC
【答案】分析:根據(jù)線段垂直平分線的性質(zhì),AE=BE,則∠B=∠CAE,再由AE平分∠BAC,得∠BAE=∠CAE.從而得出答案.
解答:解:A、∵ED⊥AB,且BD=AD
∴∠B=∠DAE
又∵AE平分∠BAC,
∴∠CAE=∠DAE
故∠B=∠CAE.正確;
B、在△ADE與△ACE中,∠CAE=∠DAE,∠C=∠ADE=90°,
根據(jù)三角形內(nèi)角和定理∠DEA=∠CEA.正確;
C、∵ED⊥AB,且BD=AD,∴∠B=∠BAE,正確;
D、不一定成立.
故選D.
點(diǎn)評:此題主要考查線段的垂直平分線的性質(zhì)等幾何知識.線段的垂直平分線上的點(diǎn)到線段的兩個端點(diǎn)的距離相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個三角形,且要求其中一個三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點(diǎn)邊上一點(diǎn),DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(2)求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點(diǎn)D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長.

查看答案和解析>>

同步練習(xí)冊答案