過點P(2,3)作直線,使它與兩坐標(biāo)軸圍成的三角形面積為12,這樣的直線可以作    條.
【答案】分析:設(shè)直線的解析式是y=kx+b,直線經(jīng)過點(2,3)則得到:2k+b=3.再根據(jù)三角形的面積是12,就可得到一個關(guān)于k,b的方程組.判斷方程組解得個數(shù)即可.
解答:解:y=kx+b,直線經(jīng)過點(2,3)則得到:2k+b=3…(1)
在y=kx+b中,令x=0,解得y=b.
令y=0,x=-.根據(jù)直線與兩坐標(biāo)軸圍成的三角形面積為12.
得到:|-|•|b|=12.即b2=24|k|…(2)
由(1)得:b=3-2k.代入(2)得:9-12k+4k2=24|k|…(3)
當(dāng)k>0時,(3)變形為:4k2-36k+9=0.這個方程有兩個不同的正根.即k有兩個正值;
當(dāng)k<0時,(3)變形為:4k2+12k+9=0.方程有兩個相同的負(fù)根,即k有一個負(fù)值;
總之,k的值有3個.
點評:把判斷直線的條數(shù)的問題轉(zhuǎn)化為判斷一元二次方程的解的個數(shù)的問題是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖1,圓O1與圓O2都經(jīng)過A、B兩點,經(jīng)過點A的直線線CD與圓O1交于點C,與圓O2交于點D.經(jīng)過點B的直線EF與圓O1交于點E,與圓O2交于點F.

(1)求證:CE∥DF;
(2)在圖1中,若CD和EF可以分別繞點A和點B轉(zhuǎn)動,當(dāng)點C與點E重合時(如圖2),過點E作直線MN∥DF,試判斷直線MN與圓O1的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中,矩形ABCO的邊OA在y正半軸上,OC在x正半軸上,點D是線段OC上一點,過點D作DE⊥AD交直線BC于點E,以A、D、E為頂點作矩形ADEF.
(1)求證:△AOD∽△DCE;
(2)若點A坐標(biāo)為(0,4),點C坐標(biāo)為(7,0).
①當(dāng)點D的坐標(biāo)為(5,0)時,拋物線y=ax2+bx+c過A、F、B三點,求點F的坐標(biāo)及a、b、c的值;
②若點D(k,0)是線段OC上任意一點,點F是否還在①中所求的拋物線上?如果在,請說明理由;如果不在,請舉反例說明;
(3)若點A的坐標(biāo)是(0,m),點C的坐標(biāo)是(n,0),當(dāng)點D在線段OC上運動時,是否也存在一條拋物線,使得點F都落在該拋物線上?若存在,請直接用含m精英家教網(wǎng)、n的代數(shù)式表示該拋物線;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在等腰梯形ABCD中,AB∥CO,E是AO的中點,過點E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點O與原點重合,OC在x軸正半軸上,點A、B在第一象限內(nèi).
(1)求點E的坐標(biāo);
(2)點P為線段EF上的一個動點,過點P作PM⊥EF交OC于點M,過M作MN∥AO交折線ABC于點N,連接PN.設(shè)PE=x.△PMN的面積為S.
①求S關(guān)于x的函數(shù)關(guān)系式;
②△PMN的面積是否存在最大值,若不存在,請說明理由.若存在,求出面積的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).現(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個單位的速度沿OC方向向右移動,直到點D與點C重合時停止(如圖2).設(shè)運動時間為t秒,運動后的直角梯形為E′D′G′H′;探究:在運動過程中,等腰梯ABCO與直角梯形E′D′G′H′重合部分的面積y與時間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A的坐標(biāo)是(-2,4),過點A作AB⊥y軸,垂足為B,連接OA.
(1)求B點的坐標(biāo);
(2)若拋物線y=-x2+bx+c經(jīng)過點A、B.
①求拋物線的解析式及頂點坐標(biāo);
②將拋物線豎直向下平移m個單位,使平移后得到的拋物線頂點落在△OAB的內(nèi)部(不包括△OAB的邊界),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC是等邊三角形,點D是射線BC上一動點(直D不與B、C重合),以AD為邊在AD的左側(cè)作等邊△ADE,過點E作BC的平行線交射線AB、AC于點F、G.
(1)當(dāng)點D在線段BC上運動時,判斷四邊形BCGE是什么四邊形?說明理由;
(2)當(dāng)點D在線段BC的延長線上運動時,(1)中的兩個結(jié)論還成立嗎?
(3)當(dāng)點D在什么位置時,四邊形BCGE是菱形?說明理由.

查看答案和解析>>

同步練習(xí)冊答案