將如圖1所示放置的一個(gè)直角三角形ABC(∠C=)繞斜邊AB旋轉(zhuǎn)一周,所得到的幾何體的正視圖是圖2中四個(gè)圖形中的________(只填序號).

答案:②
解析:

[剖析]由圖1的△ABC繞斜邊AB旋轉(zhuǎn)一周,會得到兩個(gè)底面重合的圓錐,那么其正視圖應(yīng)是②(因?yàn)樯厦娴膱A錐高些)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

綜合實(shí)踐
問題背景
某課外興趣小組在一次折紙活動中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點(diǎn)B分別與點(diǎn)A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應(yīng)條格所在直線的交點(diǎn),用平滑的曲線順次連接各交點(diǎn),得到一條曲線.
探索
如圖2,在平面直角坐標(biāo)系xOy中,將長方形紙片ABCD的頂點(diǎn)B與原點(diǎn)O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點(diǎn)B落在邊AD上的E處,過點(diǎn)E作EQ⊥BC,垂足為Q,交直線MN于點(diǎn)P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設(shè)點(diǎn)P坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運(yùn)用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),折痕與DC的延長線交于點(diǎn)F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的
53
,若存在,寫出點(diǎn)K的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,一副直角三角板滿足AB=BC=10,∠ABC=∠DEF=90°,∠EDF=30°,將三角板DEF的直角邊EF放置于三角板ABC的斜邊AC上,且點(diǎn)E與點(diǎn)A重合.
▲操作一:固定三角板ABC,將三角板DEF沿AC方向平移,使直角邊ED剛好過B點(diǎn),如圖2所示;
[探究一]三角板DEF沿A→C方向平移的距離為
5
2
5
2

▲操作二:將三角板DEF沿A→C方向平移至一定位置后,再將三角板DEF繞點(diǎn)E旋轉(zhuǎn),并使邊DE與邊AB交于點(diǎn)P,邊EF與邊BC交于點(diǎn)Q;
[探究二]在旋轉(zhuǎn)過程中,
(1)如圖3,當(dāng)
CE
EA
=1時(shí),請判斷下列結(jié)論是否正確(用“√”或“×”表示):
①EP=EQ;

②四邊形EPBQ的面積不變,且是△ABC面積的一半;

(2)如圖4,當(dāng)
CE
EA
=2時(shí),EP與EQ滿足怎樣的數(shù)量關(guān)系?并說明理由.
(3)根據(jù)你對(1)、(2)的探究結(jié)果,試寫出當(dāng)
CE
EA
=m時(shí),EP與EQ滿足的數(shù)量關(guān)系式為
EQ=mEP
EQ=mEP
;(直接寫出結(jié)論,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省鎮(zhèn)江市揚(yáng)中市外國語學(xué)校中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

綜合實(shí)踐
問題背景
某課外興趣小組在一次折紙活動中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點(diǎn)B分別與點(diǎn)A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應(yīng)條格所在直線的交點(diǎn),用平滑的曲線順次連接各交點(diǎn),得到一條曲線.
探索
如圖2,在平面直角坐標(biāo)系xOy中,將長方形紙片ABCD的頂點(diǎn)B與原點(diǎn)O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點(diǎn)B落在邊AD上的E處,過點(diǎn)E作EQ⊥BC,垂足為Q,交直線MN于點(diǎn)P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設(shè)點(diǎn)P坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運(yùn)用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),折痕與DC的延長線交于點(diǎn)F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的,若存在,寫出點(diǎn)K的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年福建省龍巖市長汀縣河田二中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

綜合實(shí)踐
問題背景
某課外興趣小組在一次折紙活動中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點(diǎn)B分別與點(diǎn)A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應(yīng)條格所在直線的交點(diǎn),用平滑的曲線順次連接各交點(diǎn),得到一條曲線.
探索
如圖2,在平面直角坐標(biāo)系xOy中,將長方形紙片ABCD的頂點(diǎn)B與原點(diǎn)O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點(diǎn)B落在邊AD上的E處,過點(diǎn)E作EQ⊥BC,垂足為Q,交直線MN于點(diǎn)P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設(shè)點(diǎn)P坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運(yùn)用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),折痕與DC的延長線交于點(diǎn)F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的,若存在,寫出點(diǎn)K的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案