(1)觀察與發(fā)現(xiàn):將矩形紙片AOCB折疊,使點(diǎn)C與點(diǎn)A重合,點(diǎn)B落在點(diǎn)B′處(如圖),折痕為EF.小明發(fā)現(xiàn)△AEF為等腰三角形,你同意嗎?請(qǐng)說(shuō)明理由.
(2)實(shí)踐與應(yīng)用:以點(diǎn)O為坐標(biāo)原點(diǎn),分別以矩形的邊OC、OA為x軸、y軸建立如圖所示的直角坐標(biāo)系,若頂點(diǎn)B的坐標(biāo)為(9,3),請(qǐng)求出折痕EF的長(zhǎng)及EF所在直線(xiàn)的函數(shù)關(guān)系式.
(1)同意,理由見(jiàn)解析;(2),y=3x-12.
【解析】
試題分析:(1)同意.
理由:因?yàn)锳B∥OC,所以∠AEF=∠EFC.根據(jù)折疊性質(zhì),有∠AFE=∠EFC.所以∠AEF=∠AFE,AE=AF.△AEF為等腰三角形.
(2)過(guò)點(diǎn)E作EG⊥OC于點(diǎn)G.設(shè)OF=x,則CF=9-x;由折疊可知:AF=9-x.
在Rt△AOF中,AF2=AO2+OF2 即:32+x2=(9-x)2,解得x=4,AE=AF=9-x=5,F(xiàn)G=OG-OF=5-4=1.在Rt△EFG中,EF2=EG2+FG2=10,求出EF=
設(shè)直線(xiàn)EF的解析式為y=kx+b(k≠0),因?yàn)辄c(diǎn)E(5,3)和點(diǎn)F(4,0)在直線(xiàn)EF上,所以,代入解得解得k,b,進(jìn)而求出解析式.
試題解析:(1)同意.
理由:∵AB∥OC,∴∠AEF=∠EFC.
根據(jù)折疊性質(zhì),有∠AFE=∠EFC.
∴∠AEF=∠AFE,
∴AE=AF.
∴△AEF為等腰三角形.
(2)過(guò)點(diǎn)E作EG⊥OC于點(diǎn)G.
設(shè)OF=x,則CF=9-x;
由折疊可知:AF=9-x.
在Rt△AOF中,AF2=AO2+OF2
∴32+x2=(9-x)2,
∴x=4,9-x=5.
∴AE=AF=5,
∴FG=OG-OF=5-4=1.
在Rt△EFG中,
EF2=EG2+FG2=10,
∴EF=
設(shè)直線(xiàn)EF的解析式為y=kx+b(k≠0),
∵點(diǎn)E(5,3)和點(diǎn)F(4,0)在直線(xiàn)EF上,
∴3=5k+b,0=4k+b,
解得:k=3,b=-12.
∴y=3x-12.
考點(diǎn):1.折疊問(wèn)題.2.一次函數(shù)的解析式.3.勾股定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分10分) 1.(1)觀察與發(fā)現(xiàn):將矩形紙片AOCB折疊,使點(diǎn)C與點(diǎn)A重合,點(diǎn)B落在點(diǎn)B′ 處(如圖1),折痕為EF.小明發(fā)現(xiàn)△AEF為等腰三角形,你同意嗎?請(qǐng)說(shuō)明理由.(3分)
2.(2)實(shí)踐與應(yīng)用:以點(diǎn)O為坐標(biāo)原點(diǎn),分別以矩形的邊OC、OA為x軸、y軸建立如圖所示的直角坐標(biāo)系,若頂點(diǎn)B的坐標(biāo)為(9,3),請(qǐng)求出折痕EF的長(zhǎng)及EF所在直線(xiàn)的函數(shù)關(guān)系式.(4+3分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
觀察與發(fā)現(xiàn):將矩形紙片AOCB折疊,使點(diǎn)C與點(diǎn)A重合,點(diǎn)B落在點(diǎn)B′ 處 (如圖1),折痕為EF.小明發(fā)現(xiàn)△ AEF為等腰三角形,你同意嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com