【題目】如圖,在△ABC中,AB=24,AC=18,DAC上一點,AD=6,在AB上取一點E,使A、DE三點組成的三角形與△ABC相似,則AE的長為( )

A.8B.C.8D.89

【答案】C

【解析】

要考慮到在AB上取一點E,使AD,E三點組成的三角形與△ABC相似情況有兩種,一是過DDEBC,二是在AB上取一點E,使△ADE~△ABC.

如圖,情況分兩種:解:

要在AB上取一點E,使A,D,E三點組成的三角形與△ABC相似情況有兩種,

(1)過D作DE∥BC,交AB于點E

在△ABC中,∵EF∥AB

∴△ADE~△ACB,

∵AB=24,AC=18, AD=6

=

∵AE=8

(2)在AB上取 一點E,使△ADE~△ABC

,即=

∴AE=

故答案為:c

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某電視臺為了解本地區(qū)電視節(jié)目的收視情況,對部分市民開展了你最喜愛的電視節(jié)目的問卷調查(每人只填寫一項),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖(如圖所示),根據(jù)要求回答下列問題:

(1)本次問卷調查共調查了________名觀眾;圖②中最喜愛新聞節(jié)目的人數(shù)占調查總人數(shù)的百分比為________;

(2)補全圖①中的條形統(tǒng)計圖;

(3)現(xiàn)有最喜愛新聞節(jié)目(記為),“體育節(jié)目(記為),“綜藝節(jié)目(記為),“科普節(jié)目(記為)的觀眾各一名,電視臺要從四人中隨機抽取兩人參加聯(lián)誼活動,請用列表或畫樹狀圖的方法,求出恰好抽到最喜愛兩位觀眾的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,的坐標分別為,,過,,三點作圓,點在第一象限部分的圓上運動,連結,過點的垂線交的延長線于點,下列說法:①;②;③的最大值為10.其中正確的是(

A. ①②B. ②③C. ①③D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC與△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,則CD=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某藥廠銷售部門根據(jù)市場調研結果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進行預測,并建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關系,其圖象是函數(shù)p=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關系:

Q=

(1)當8<t≤24時,求P關于t的函數(shù)解析式;

(2)設第t個月銷售該原料藥的月毛利潤為W(單位:萬元).

①求W關于t的函數(shù)解析式;

②第幾個月銷售該原料藥的月毛利潤最大?對應的月銷售量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖、在平行四邊形ABCD中,E、F是對角線BD上的兩點,則下列條件中不能判定四邊形AECF是平行四邊形的是( )

A.BD=DFB.AFBD,

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx+2a≠0)與x軸交于A-10),B3,0)兩點,與y軸交于點C,連接BC

1)求該拋物線的解析式,并寫出它的對稱軸;

2)點D為拋物線對稱軸上一點,連接CD、BD,若∠DCB=CBD,求點D的坐標;

3)已知F1,1),若Exy)是拋物線上一個動點(其中1x2),連接CE、CFEF,求CEF面積的最大值及此時點E的坐標.

4)若點N為拋物線對稱軸上一點,拋物線上是否存在點M,使得以B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸的負半軸于點.軸正半軸上一點,點關于點的對稱點恰好落在拋物線上.過點軸的平行線交拋物線于另一點.若點的橫坐標為,則的長為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均落在格點上.

1△ABC的面積等于    ;

2)若四邊形DEFG△ABC中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法(不要求證明)    

查看答案和解析>>

同步練習冊答案