【題目】如圖,在平面直角坐標(biāo)系中,直線y=x﹣2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=x2+bx+c經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D為直線AC下方拋物線上一點(diǎn),且∠ACD=2∠BAC,求點(diǎn)D的坐標(biāo).
【答案】(1)y=x2﹣x﹣2;(2)D(2,﹣3)
【解析】
(1)求出A、C兩點(diǎn)坐標(biāo),利用待定系數(shù)法即可解決問題;
(2)過點(diǎn)D作DF∥x軸,交y軸于點(diǎn)E,則∠CFD=∠BAC,推出∠CDF=∠CFD,可得∠ACD=2∠BAC,由此利用三角函數(shù)構(gòu)建方程即可解決問題;
解:(1)直線y=x﹣2與x軸交于點(diǎn)A, 與y軸交于點(diǎn)C,x=0時(shí),y=-2,y=0時(shí),x=4,所以A(4,0),C(0,﹣2),
把A(4,0),C(0,-2)代入y= x2+bx+c,得到,
解得,
∴拋物線的解析式為y=x2﹣x﹣2.
(2)過點(diǎn)D作DF∥x軸,交y軸于點(diǎn)E,則∠CFD=∠BAC,
∵∠ACD=2∠BAC=∠CFD+∠CDF,
∴∠CDF=∠CFD,
∴tan∠CDF=tan∠BAC=,
∴
解得x=2,
∴D(2,﹣3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a,m)在雙曲線y=上且m<0,過點(diǎn)A作x軸的垂線,垂足為B.
(1)如圖1,當(dāng)a=﹣2時(shí),P(t,0)是x軸上的動(dòng)點(diǎn),將點(diǎn)B繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°至點(diǎn)C,
①若t=1,直接寫出點(diǎn)C的坐標(biāo);
②若雙曲線y=經(jīng)過點(diǎn)C,求t的值.
(2)如圖2,將圖1中的雙曲線y=(x>0)沿y軸折疊得到雙曲線y=﹣(x<0),將線段OA繞點(diǎn)O旋轉(zhuǎn),點(diǎn)A剛好落在雙曲線y=﹣(x<0)上的點(diǎn)D(d,n)處,求m和n的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A(-2,0),與反比例函數(shù)在第一象限內(nèi)的圖象交于點(diǎn)B(2,n),連結(jié)BO,若.
(1)求該反比例函數(shù)的解析式;
(2)若直線AB與y軸的交點(diǎn)為C,求△OCB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=90°,AB=BC,點(diǎn)D是BC邊上的一點(diǎn),連接AD,將AD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到DE,作EF⊥BC交BC的延長線于點(diǎn)F.
(1)依題意補(bǔ)全圖形;
(2)求證:EF=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣2,與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①4a﹣b=0;②c<0;③﹣3b+4c>0;④4a﹣2b≥at2+bt(t為實(shí)數(shù));⑤點(diǎn)(﹣,y1),(﹣,y2),(﹣,y3)是該拋物線上的點(diǎn),則y1<y2<y3,其中正確的結(jié)論有( 。
A. ②④ B. ①③④⑤ C. ①②③⑤ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣2,與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①4a﹣b=0;②c<0;③﹣3b+4c>0;④4a﹣2b≥at2+bt(t為實(shí)數(shù));⑤點(diǎn)(﹣,y1),(﹣,y2),(﹣,y3)是該拋物線上的點(diǎn),則y1<y2<y3,其中正確的結(jié)論有( 。
A. ②④ B. ①③④⑤ C. ①②③⑤ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】瓦子街是上杭城關(guān)老城區(qū)改造的商業(yè)文化購物步行街,瓦子街某商場經(jīng)營的某個(gè)品牌童裝,購進(jìn)時(shí)的單價(jià)是60元,根據(jù)市場調(diào)查,在一段時(shí)間內(nèi),銷售單價(jià)是80元時(shí),銷售量是200件,銷售單價(jià)每降低1元,就可多售出20件.
求出銷售量件與銷售單價(jià)元之間的函數(shù)關(guān)系式;
求出銷售該品牌童裝獲得的利潤元與銷售單價(jià)元之間的函數(shù)關(guān)系式;
若童裝廠規(guī)定該品牌童裝的銷售單價(jià)不低于76元且不高于80元,則商場銷售該品牌童裝獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過正方形ABCD頂點(diǎn)B,C的⊙O與AD相切于點(diǎn)E,與CD相交于點(diǎn)F,連接EF.
(1)求證:EF平分∠BFD.
(2)若tan∠FBC=,DF=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC為12米,并測出此時(shí)太陽光線與地面成30°夾角.
(1)求出樹高AB;
(2)因水土流失,此時(shí)樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設(shè)太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com