【題目】在ABCD中,過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F 在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
【答案】證明:(1)∵四邊形ABCD是平行四邊形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四邊形BFDE是平行四邊形.
∵DE⊥AB,
∴∠DEB=90°,
∴四邊形BFDE是矩形;
(2)解:∵四邊形ABCD是平行四邊形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC==5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
【解析】(1)根據(jù)平行四邊形的性質(zhì),可得AB與CD的關(guān)系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;
(2)根據(jù)平行線的性質(zhì),可得∠DFA=∠FAB,根據(jù)等腰三角形的判定與性質(zhì),可得∠DAF=∠DFA,根據(jù)角平分線的判定,可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD于F,交AC于E,若EG⊥BC于G,連結(jié)FG.說明四邊形AFGE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長方形的面積是3a2-3ab+6a,一邊長為3a,則它的另一條邊長為( )
A. 2a-b+2 B. a-b+2
C. 3a-b+2 D. 4a-b+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算中正確的是( )
A.a4+a2=a6
B.(a﹣b)2=a2﹣b2
C.a6÷a3=a3
D.(﹣a3)2=﹣a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若(mx4)·(4xk)=-12x12,則適合條件的m,k的值分別是( )
A. m=-3,k=8 B. m=3,k=8
C. m=8,k=3 D. m=-3,k=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠a的補(bǔ)角為29°18′,則∠a的大小為( )
A. 150°42′. B. 60°42′. C. 150°82′. D. 60°82′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x2﹣x﹣2=0的解是( )
A.x1=1,x2=2
B.x1=1,x2=﹣2
C.x1=﹣1,x2=﹣2
D.x1=﹣1,x2=2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com