【題目】閱讀下面材料:

學(xué)習(xí)了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聰繼續(xù)對兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等的情形進(jìn)行研究

小聰將命題用符號語言表示為:在ABCDEF中,AC=DF,BC=EFB=E

小聰?shù)奶骄糠椒ㄊ菍Α?/span>B分為直角、鈍角、銳角三種情況進(jìn)行探究.

第一種情況:當(dāng)∠B 是直角時,如圖1,ABCDEF中,AC=DF,BC=EF,B=E=90°,根據(jù)“HL”定理,可以知道RtABCRtDEF

第二種情況:當(dāng)∠B 是銳角時,如圖2,BC=EF,B=E90°,在射線EM上有點(diǎn)D,使DF=AC,畫出符合條件的點(diǎn)D,則ABCDEF的關(guān)系是   ;

A.全等 B.不全等 C.不一定全等

第三種情況:當(dāng)∠B是鈍角時,如圖3,在ABCDEF中,AC=DFBC=EF,B=E90°.過點(diǎn)CAB邊的垂線交AB延長線于點(diǎn)M;同理過點(diǎn)FDE邊的垂線交DE延長線于N,根據(jù)“ASA”,可以知道CBM≌△FEN,請補(bǔ)全圖形,進(jìn)而證出ABC≌△DEF

【答案】第二種情況選C理由見解析;第三種情況補(bǔ)全圖見解析,證明見解析.

【解析】試題分析第二種情況選C.畫出圖形即可判斷.

第三種情況先證明△CMA≌△FND,推出AM=DN推出AB=DE,再證明△ABC≌△DEF即可.

試題解析第二種情況選C

理由由題意滿足條件的點(diǎn)D有兩個,故△ABC和△DEF不一定全等(如圖所示)

故選C

第三種情況補(bǔ)全圖.

證明由△CBM≌△FEN,CM=FN,BD=EN

RtCMARtFND中,∵,∴△CMA≌△FNDAM=DN,AB=DE.在ABC和△DEF中,∵∴△ABC≌△DEF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,以A為圓心,任意長為半徑畫弧分別交ABAC于點(diǎn)MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個數(shù)是

ADBAC的平分線;②∠ADC=60°;點(diǎn)DAB的中垂線上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點(diǎn) A 逆時針旋轉(zhuǎn)得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點(diǎn) PH,連結(jié) AH,若 P CH 的中點(diǎn),則APH 的周長為(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面內(nèi),菱形 ABCD 的對角線相交于點(diǎn) O,點(diǎn) O 又是菱形B1A1OC1的一個頂點(diǎn),菱形 ABCD菱形 B1A1OC1,AB=BD=10.菱形B1A1OC1 繞點(diǎn) O 轉(zhuǎn)動,求兩個菱形重疊部分面積的取值范圍,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來網(wǎng)約車十分流行,初三某班學(xué)生對美團(tuán)滴滴兩家網(wǎng)約車公司各10名司機(jī)月收入進(jìn)行了一項(xiàng)抽樣調(diào)查,司機(jī)月收入(單位:千元)如圖所示:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均月收入/千元

中位數(shù)/千元

眾數(shù)/千元

方差/千元2

美團(tuán)

6

6

1.2

滴滴

6

4

(1)完成表格填空;

(2)若從兩家公司中選擇一家做網(wǎng)約車司機(jī),你會選哪家公司,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過點(diǎn)A24)和B(﹣1,﹣5)兩點(diǎn).

1)求出該一次函數(shù)的表達(dá)式;

2)畫出該一次函數(shù)的圖象;

3)判斷(﹣5,﹣4)是否在這個函數(shù)的圖象上?

4)求出該函數(shù)圖象與坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)y=的圖象交于C、D兩點(diǎn),DEx軸于點(diǎn)E,已知C點(diǎn)的坐標(biāo)是(﹣6,﹣1),DE=3.

(1)求反比例函數(shù)與一次函數(shù)的解析式.

(2)根據(jù)圖象直接回答:當(dāng)x為何值時,一次函數(shù)的值小于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,RtABC,∠ACB=90,直角邊AC在射線OP,直角頂點(diǎn)C與射線端點(diǎn)0重合,AC=bBC=a,且滿足

(1)a,b的值

(2)如圖2,向右勻速移動RtABC在移動的過程中RtABC的直角邊AC在射線OP上勻速向右運(yùn)動,移動的速度為1個單位/秒移動的時間為t,連接OB

OAB為等腰三角形t的值;

②RtABC在移動的過程中,能否使OAB為直角三角形若能,求出t的值若不能說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價為20元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案