【題目】如圖,在中,平分.

1)若為線段上的一個(gè)點(diǎn),過點(diǎn)交線段的延長線于點(diǎn)

①若,,則  

②猜想、之間的數(shù)量關(guān)系,并給出證明.

2)若在線段的延長線上,過點(diǎn)交直線于點(diǎn).請你做出示意圖,直接寫出的數(shù)量關(guān)系.

【答案】(1)①;②;(2)

【解析】

1)先根據(jù)三角形內(nèi)角和定理求得∠BAC的度數(shù),然后利用角平分線定義和三角形外角定理求得∠PDE的度數(shù),再利用直角三角形兩銳角互余,即可解答;

2)根據(jù)(1)的思路,進(jìn)行推導(dǎo),即可求得三個(gè)角之間的關(guān)系;

3)根據(jù)(1)的思路,進(jìn)行推導(dǎo),即可求得三個(gè)角之間的關(guān)系;

解:(1)①,

,

平分

,

,

故答案為:;

②數(shù)量關(guān)系:;理由如下:

設(shè),,

平分,,

,

,

2,理由如下:

如圖所示:

設(shè),

平分,

,

,

,

,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD和過點(diǎn)C的切線互相垂直,垂足為D,直線DCAB的延長線相交于PCE平分∠ACB,交直徑AB于點(diǎn)F,連結(jié)BE

1)求證:AC平分∠DAB;

2)探究線段PC,PF之間的大小關(guān)系,并加以證明;

3)若tanPCB=,BE=,求PF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在折紙活動中,小明制作了一張△ABC的紙片,點(diǎn)D,E分別在邊AB,AC上,將△ABC沿著DE折疊壓平,AA′重合,若∠A=75°,求∠1+∠2的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C90°,∠A60°.

1)尺規(guī)作圖:作ABC的角平分線AD(不寫作法,保留作圖痕跡);

2)畫DEAB,垂足為E;

3)若BC12cm,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3在直線yx+b上,點(diǎn)B1,B2,B3x軸上,OA1B1,B1A2B2,B2A3B3都是等腰直角三角形,若已知點(diǎn)A11,1),則點(diǎn)A3的縱坐標(biāo)是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化工材料經(jīng)銷公司購進(jìn)一種化工原料若干千克,價(jià)格為每千克30元。物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克60元,不低于每千克30元。經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100。在銷售過程中,每天還要支付其他費(fèi)用450元。

(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。

(2)求該公司銷售該原料日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式。

(3)當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB=12,ACAB,BDAB,AC=BD=8。點(diǎn)P在線段AB上以每秒2個(gè)單位的速度由點(diǎn)A向點(diǎn)B運(yùn)動,同時(shí),點(diǎn)Q在線段BD上由B點(diǎn)向點(diǎn)D運(yùn)動。它們的運(yùn)動時(shí)間為t(s).

1)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,當(dāng)t=2時(shí),ACPBPQ是否全等,請說明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;

2)如圖2,將圖1中的ACAB,BDAB改為CAB=DBA=60°”,其他條件不變。設(shè)點(diǎn)Q的運(yùn)動速度為每秒x個(gè)單位,是否存在實(shí)數(shù)x,使得ACPBPQ全等?若存在,求出相應(yīng)的x,t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)M是等邊△ABD中邊AB上任意一點(diǎn)(不與A. B重合),作∠DMN=60,交∠DBA外角平分線于點(diǎn)N.

(1)求證:DM=MN;

(2)若點(diǎn)MAB的延長線上,其余條件不變,結(jié)論“DM=MN”是否依然成立?請你畫出圖形并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E,F分別在邊,AD,CD上,且,BDEF交于點(diǎn)O,延長BD至點(diǎn)H,使得,并連接HE,HF

求證:;

試判斷四邊形BEHF是什么特殊的四邊形,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案