【題目】如圖1,點(diǎn)在線段上,圖中共有三條線段,和,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點(diǎn)是線段的“巧點(diǎn)”.
(1)線段的中點(diǎn)_________這條線段的“巧點(diǎn)”;(填“是”或“不是”);
(2)如圖2,已知.動點(diǎn)從點(diǎn)出發(fā),以的速度沿向點(diǎn)勻速運(yùn)動;點(diǎn)從點(diǎn)出發(fā),以的速度沿向點(diǎn)勻速運(yùn)動,點(diǎn),同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,運(yùn)動停止.設(shè)移動的時間為,當(dāng)_________時,為的“巧點(diǎn)”.
【答案】是 7.5或
【解析】
(1)根據(jù)“巧點(diǎn)”的定義即可求解;
(2)當(dāng)Q為A、P的巧點(diǎn)時,分①當(dāng)AP=2AQ時②當(dāng)PQ=2AQ時③當(dāng)AQ=2PQ時三種情況進(jìn)行討論求解即可.
(1)若線段中點(diǎn)為點(diǎn),,所以中點(diǎn)是這條線段“巧點(diǎn)”
故答案為:是
(2) t秒后,AP=2t,AQ=15-t(0≤t≤7.5)
當(dāng)Q為A、P的巧點(diǎn)時,
①當(dāng)AP=2AQ時,即(15t)2=2t,解得t=7.5s;
②當(dāng)PQ=2AQ時,AQ=AP,即15t=2t,解得t=9s>7.5s,故舍去;
③當(dāng)AQ=2PQ時,AQ=AP,即15t=2t,解得t=s;
綜上所述:t=7.5s或s
故答案為:t=7.5或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個尋寶游戲的尋寶通道如圖①所示,通道由在同一平面內(nèi)的AB,BC,CA,OA, OB,OC組成。為記錄尋寶者的行進(jìn)路線,在BC的中點(diǎn)M處放置了一臺定位儀器,設(shè)尋寶者行進(jìn)的時間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進(jìn),且表示y與x的函數(shù)關(guān)系的圖像大致如圖②所示,則尋寶者的行進(jìn)路線可能為:
A. A→O→B B. B→A→C C. B→O→C D. C→B→O
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是菱形邊上的一個動點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿的方向勻速運(yùn)動到停止,過點(diǎn)作垂直直線于點(diǎn),已知,設(shè)點(diǎn)走過的路程為,點(diǎn)到直線的距離為(當(dāng)點(diǎn)與點(diǎn)或點(diǎn)重合時,的值為)
小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)隨自變量的變化規(guī)律進(jìn)行了探究,下面是小騰的探究過程,請補(bǔ)充完整;
(1)按照下表中自變量的值進(jìn)行取點(diǎn),畫圖,測量,分別得到了以下幾組對應(yīng)值;
(2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn),并畫出函數(shù)的圖像;
(3)結(jié)合函數(shù)圖像,解決問題,當(dāng)點(diǎn)到直線的距離恰為點(diǎn)走過的路程的一半時,點(diǎn)P走過的路程約是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點(diǎn)A與點(diǎn)E重合),已知AC8 cm,BC6 cm,∠C90°,EG4 cm,∠EGF90°,O是△EFG斜邊上的中點(diǎn). 如圖乙,若整個△EFG從圖甲的位置出發(fā),以1 cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點(diǎn)P從△EFG的頂點(diǎn)G出發(fā),以1 cm/s的速度在直角邊GF上向點(diǎn)F運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)F時,點(diǎn)P停止運(yùn)動,△EFG也隨之停止平移. 設(shè)運(yùn)動時間為x(s),FG的延長線交AC于H,四邊形OAHP的面積為y(cm2)(提示:不考慮點(diǎn)P與G、F重合的情況).
(1)當(dāng)x為何值時,OP∥AC?
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(0,3),C(1,0).
(1)求此拋物線的解析式.
(2)點(diǎn)P是直線AB上方的拋物線上一動點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PD⊥AB于點(diǎn)D.
①動點(diǎn)P在什么位置時,△PDE的周長最大,求出此時P點(diǎn)的坐標(biāo);
②連接PA,以AP為邊作圖示一側(cè)的正方形APMN,隨著點(diǎn)P的運(yùn)動,正方形的大小、位置也隨之改變.
當(dāng)頂點(diǎn)M或N恰好落在拋物線對稱軸上時,求出對應(yīng)的P點(diǎn)的坐標(biāo).(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形的邊、分別落在、軸上,點(diǎn)坐標(biāo)為,反比例函數(shù)的圖象與邊交于點(diǎn),與邊交于點(diǎn),連結(jié),將沿翻折至處,點(diǎn)恰好落在正比例函數(shù)圖象上,則的值是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長至點(diǎn)F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:如圖1,在平行四邊形ABCD中,E是AD上一點(diǎn),AE=AB,∠EAB=60°,過點(diǎn)E作直線EF,在EF上取一點(diǎn)G.使得∠EGB=∠EAB,連接AG.
求證:EG=AG+BG.
小明同學(xué)的思路是:作∠CAM=∠EAB交CE于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過推理解決問題.
參考小明同學(xué)的思路,探究并解決下列問題:
(1)完成上面問題中的證明;
(2)如果將原問題中的“∠EAB=60°”改為“∠EAB=90°”,原問題中的其它條件不變(如圖2),請?zhí)骄烤段EC、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
解:線段EG、AG、BG之間的數(shù)量關(guān)系為___________________________________________________.證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com