【題目】如圖,已知線段AB=20cm,點(diǎn)CAB上的一個(gè)動點(diǎn),點(diǎn)DE分別是ACBC的中點(diǎn)

(1)若點(diǎn)C恰好是AB中點(diǎn),則DE的長是多少?(直接寫出結(jié)果)

(2)若BC=14cm,求DE的長

(3)試說明不論BC取何值(不超過20cm),DE的長不變

(4)知識遷移:如圖,已知∠AOB=130°,過角的內(nèi)部任一點(diǎn)C畫射線OC,若ODOE分別平分∠AOC和∠BOC,試求出∠DOE的大小,并說明∠DOE的大小與射線OC的位置是否有關(guān)?

【答案】(1)DE=10cm;(2)DE=10cm;(3)證明見詳解;(4)∠DOE=65°,DOE的度數(shù)與射線OC的位置無關(guān).

【解析】

(1)根據(jù)中點(diǎn)的性質(zhì)求出AC、BC的長,根據(jù)線段中點(diǎn)的定義計(jì)算即可;

(2)根據(jù)中點(diǎn)的性質(zhì)求出AC、BC的長,根據(jù)線段中點(diǎn)的定義計(jì)算即可;

(3)根據(jù)中點(diǎn)的性質(zhì)求出AC、BC的長,根據(jù)線段中點(diǎn)的定義計(jì)算,即可說明DE的長不變;

(4)根據(jù)角平分線的定義得到∠DOC=AOC,EOC=BOC,結(jié)合圖形計(jì)算即可求出∠DOE的大。

解:(1)∵點(diǎn)C恰為AB的中點(diǎn),

AC=BC=AB=10cm,

∵點(diǎn)D、E分別是ACBC的中點(diǎn),

DC=AC=5cm,CE=BC=5cm,

DE=10cm.

(2)AB=20cm,BC=14cm,

AC=6cm,

∵點(diǎn)D、E分別是ACBC的中點(diǎn),

CD=3cm,CE=7cm,

DE=CD+CE=10cm;

(3)∵點(diǎn)D、E分別是ACBC的中點(diǎn),

CD=AC,CE=BC,

DE=CD+CE=(AC+BC)=AB=10cm,

∴不論AC取何值(不超過20cm),DE的長不變.

(4)OD、OE分別平分∠AOC和∠BOC,

∴∠DOC=AOC,∠COE=COB,

∴∠DOE=DOC+COE=AOC+COB)=AOB,

∵∠AOB=130°,

∴∠DOE=65°.

∴∠DOE的度數(shù)與射線OC的位置無關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雅安地震,牽動著全國人民的心,地震后某中學(xué)舉行了愛心捐款活動,圖是根據(jù)該校九年級某班學(xué)生為雅安災(zāi)區(qū)捐款情況繪制的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

(1)求該班學(xué)生總?cè)藬?shù);

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校九年級有800,據(jù)此樣本,請你估計(jì)該校九年級學(xué)生共捐款多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列一段文字,再回答后面的問題.

已知在平面內(nèi)兩點(diǎn)P1(x1,y1),P2(x2,y2),這兩點(diǎn)間的距離P1P2=,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可簡化為|x2﹣x1||y2﹣y1|.

(1)已知A(3,3),B(﹣2,﹣1),試求A,B兩點(diǎn)間的距離;

(2)已知A,B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為7,點(diǎn)B的縱坐標(biāo)為﹣2,試求A,B兩點(diǎn)間的距離;

(3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為A(0,5),B(﹣3,2),C(3,2),你能判斷此三角形的形狀嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P1、P2是反比例函數(shù)y= (k>0)在第一象限圖象上的兩點(diǎn),點(diǎn)A1的坐標(biāo)為(4,0).若△P1OA1與△P2A1A2均為等腰直角三角形,其中點(diǎn)P1、P2為直角頂點(diǎn).
(1)求反比例函數(shù)的解析式.
(2)①求P2的坐標(biāo). ②根據(jù)圖象直接寫出在第一象限內(nèi)當(dāng)x滿足什么條件時(shí),經(jīng)過點(diǎn)P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)y= 的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解決問題:

一輛貨車從超市出發(fā),向東走了3千米到達(dá)小彬家,繼續(xù)走2.5千米到達(dá)小穎家,然后向西走了10千米到達(dá)小明家,最后回到超市.

(1)以超市為原點(diǎn),以向東的方向?yàn)檎较,?/span>1個(gè)單位長度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.

(2)小明家距小彬家多遠(yuǎn)?

(3)貨車一共行駛了多少千米?

(4)貨車每千米耗油0.2升,這次共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)在直角坐標(biāo)系中,先描出點(diǎn)A(1,3),點(diǎn)B(4,1).并直接寫出點(diǎn)A關(guān)于x軸的對稱的A1的坐標(biāo)A1 , ).

(2)在x軸上找一點(diǎn)C,使AC+BC的值最小; (保留作圖痕跡).

(3)用尺規(guī)在x軸上找一點(diǎn)P,使PA=PB(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD= ,AF平分∠DAB,過C點(diǎn)作CE⊥BD于E,延長AF、EC交于點(diǎn)H,下列結(jié)論中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED,正確的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(diǎn)(不含B、C兩點(diǎn)),將 ABP沿直線AP翻折,點(diǎn)B落在點(diǎn)E處;在CD上有一點(diǎn)M,使得將 CMP沿直線MP翻折后,點(diǎn)C落在直線PE上的點(diǎn)F處,直線PE交CD于點(diǎn)N,連接MA,NA.則以下結(jié)論中正確的個(gè)數(shù)有( ).

CMP∽ BPA;
②四邊形AMCB的面積最大值為10;
③當(dāng)P為BC中點(diǎn)時(shí),AE為線段NP的中垂線;
④線段AM的最小值為2 ;
⑤當(dāng) ABP≌ AND時(shí),BP=4 -4.
A.①②③
B.②③⑤
C.①④⑤
D.①②⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠E=50°,BAC=50°,D=110°,求∠ABD的度數(shù).

請完善解答過程,并在括號內(nèi)填寫相應(yīng)的理論依據(jù).

解:∵∠E=50°,BAC=50°,(已知)

∴∠E=   (等量代換)

      .(   

∴∠ABD+D=180°.(   

∴∠D=110°,(已知)

∴∠ABD=70°.(等式的性質(zhì))

查看答案和解析>>

同步練習(xí)冊答案