【題目】如圖,直線AB和直線CD,直線BE和直線CF都被直線BC所截,在下面三個式子只,請你選擇其中兩個作為題設(shè),剩下的一個作為結(jié)論,組成一個真命題并寫出對應(yīng)的推理過程

題設(shè)已知;______

結(jié)論求證:______

理由:

【答案】;

【解析】

可以由①②得到③:由于ABCD、BECF,利用平行線的性質(zhì)得到∠ABC=DCB,又BECF,則∠EBC=FCB,可得到∠ABC-EBC=DCB-FCB,即有∠1=2.(答案不唯一)

已知:如圖,ABCD、BECE,

求證:∠1=2.

證明:如圖,

ABCD,

∴∠ABC=DCB,

又∵BECF,

∴∠EBC=FCB,

∴∠ABC-EBC=DCB-FCB,

∴∠1=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x分

頻數(shù)(人數(shù))

第1組

50≤x<60

6

第2組

60≤x<70

8

第3組

70≤x<80

14

第4組

80≤x<90

a

第5組

90≤x<100

10

請結(jié)合圖表完成下列各題:
(1)①表中a的值為;②頻數(shù)分布直方圖補充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是
(3)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進行對抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強兩名男同學(xué)能分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,△ABC在平面直角坐標系中的位置如圖①所示,A點坐標為(﹣4,0),B點坐標為(6,0),點D為AC的中點,點E為線段AB上一動點,連接DE經(jīng)過點A、B、C三點的拋物線的解析式為y=ax2+bx+8.

(1)求拋物線的解析式;
(2)如圖①,將△ADE以DE為軸翻折,點A的對稱點為點G,當點G恰好落在拋物線的對稱軸上時,求G點的坐標;
(3)如圖②,當點E在線段AB上運動時,拋物線y=ax2+bx+8的對稱軸上是否存在點F,使得以C、D、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知有如下一組單項式:7x3z2,8x3y,x2yz,-3xy2z,9x4zy,zy2,-xyz,9y3z,xz2y,0,3z3.我們用下面的方法確定它們的先后次序:對任兩個單項式,先看x的指數(shù),規(guī)定x的指數(shù)高的單項式排在x的指數(shù)低的單項式前面;若x的指數(shù)相同,則再看y的指數(shù),規(guī)定y的指數(shù)高的單項式排在y的指數(shù)低的單項式前面;若y的指數(shù)也相同,則再看z的指數(shù),規(guī)定z的指數(shù)高的單項式排在z的指數(shù)低的單項式前面.將這組單項式按上述方法排序,那么,9y3z應(yīng)排在第幾位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,點M,N分別在AB,BC上,將△BMN沿MN翻折得到△FMN,若MF∥AD,F(xiàn)N∥DC,則∠D的度數(shù)為( )

A. 115° B. 105° C. 95° D. 85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,分別探究下面兩個圖形中∠APC和∠PAB、∠PCD的關(guān)系,請從你所得兩個關(guān)系中選出任意一個,說明你探究的結(jié)論的正確性.

結(jié)論:(1)

(2)

選擇結(jié)論: ,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB:y=kx+2kx軸于點A,交y軸正半軸于點B,且SOAB=3

(1) A、B兩點的坐標

(2) 將直線ABA點順時針旋轉(zhuǎn)45°,交y軸于點C,求直線AC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟的發(fā)展,能源與環(huán)境已成為人們?nèi)找骊P(guān)注的問題.據(jù)統(tǒng)計,全球每年大約會產(chǎn)生近3億噸的塑料垃圾(例如平時用的礦泉水瓶子等)和約5億噸的廢鋼鐵(例如平時扔掉的易拉罐等),某中學(xué)為了培養(yǎng)學(xué)生的環(huán)保意識,開展了環(huán)境保護,從我做起的主題活動,七(2)班同學(xué)在活動中積極響應(yīng),在甲小區(qū)設(shè)立了回收塑料瓶和易拉罐的兩個垃圾桶,班長小明對2周的收集情況進行了統(tǒng)計,根據(jù)下列統(tǒng)計表和廢品收購站的價格表,解決下列問題:

(1)全班2周共收集了   斤塑料瓶,收集了   斤易拉罐.

(2)班委會決定給貧困山區(qū)的孩子們捐贈一套價值50.4元的勵志叢書,你認為按照這樣的收集速度,至少需要收集幾周才能實現(xiàn)這個愿望?寫出計算過程.

(3)七(1)班在乙小區(qū)也設(shè)立了塑料瓶和易拉罐的回收點,兩周收集塑料瓶和易拉罐共計440個,按相同價格出售后,所得金額比七(2)班兩個周的廢品回收金額多1.8元,求七(1)班同學(xué)兩周收集的塑料瓶和易拉罐各多少個?

查看答案和解析>>

同步練習(xí)冊答案