精英家教網 > 初中數學 > 題目詳情
已知拋物線y=kx2+2kx-3k,交x軸于A、B兩點(A在B的左邊),交y軸于C點,且y有最大值4.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點P,使△PBC是直角三角形?若存在,求出P點坐標;若不存在,說明理由.
(1)∵y有最大值4,
∴y=kx2+2kx-3k=k(x+1)2-4k,
∴-4k=4,
解得k=-1,
∴y=-x2-2x+3,
答:拋物線的解析式是y=-x2-2x+3.

(2)根據直角的可能性分三種情況:
①當∠C=90°時,作PC⊥BC交拋物線于P點,并做PD⊥y軸于D點,
設P(x,-x2-2x+3),
∵△OBC△DCP,
CO
BO
=
DP
CD
,
3
1
=
-x
3-(-x2-2x+3)
,
∴x1=0(舍去),x2=-
7
3
,
P(-
7
3
20
9
)
;
②當∠B=90°時,作PB⊥BC交拋物線于P點,并作PE⊥x軸于點E,
設P(x,-x2-2x+3),
∵△OBC△EPB,
CO
BO
=
EB
EP
,
3
1
=
1-x
-(-x2-2x+3)
,
∴x1=1(舍去),x2=-
10
3
,
P(-
10
3
,-
13
9
)
;
③當∠P=90°時,點P應在以BC為直徑的圓周上,
如圖,與拋物線無交點,故不存在,
綜上所述,這樣的點P有兩個:P1(-
7
3
,
20
9
)
,P2(-
10
3
,-
13
9
),
答:在拋物線上存在點P,使△PBC是直角三角形,P點坐標是(-
7
3
20
9
)或(-
10
3
,-
13
9
).
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,已知二次函數y=-x2+bx+c(c>0)的圖象與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,且OB=OC=3,頂點為M.
(1)求二次函數的解析式;
(2)點P為線段BM上的一個動點,過點P作x軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關于m的函數解析式,并寫出m的取值范圍;
(3)探索:線段BM上是否存在點N,使△NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知直線y=x與拋物線y=
1
2
x2
交于A、B兩點.
(1)求交點A、B的坐標;
(2)記一次函數y=x的函數值為y1,二次函數y=
1
2
x2
的函數值為y2.若y1>y2,求x的取值范圍;
(3)在該拋物線上存在幾個點,使得每個點與AB構成的三角形為等腰三角形?并求出不少于3個滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線:y=
1
2
x2+bx+c
與x軸交于A、B(A在B左側),頂點為C(1,-2),
(1)求此拋物線的關系式;并直接寫出點A、B的坐標.
(2)求過A、B、C三點的圓的半徑.
(3)在拋物線上找點P,在y軸上找點E,使以A、B、P、E為頂點的四邊形是平行四邊形,求點P、E的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點A,B.已知點A的坐標為(1,4),點B在第三象限內,連結AB交y軸于點E,且S△BOE=
2
3
S△AOB(O為坐標原點).
(1)求此拋物線的函數關系式;
(2)過點A作直線平行于x軸交拋物線于另一點C.問在y軸上是否存在點P,使△POC與△OBE相似,若存在,求出點P的坐標;若不存在,請簡要說明理由;
(3)拋物線與x軸的負半軸交于點D,過點B作直線ly軸,點Q在直線l上運動,且點Q的縱坐標為t,試探索:當S△AOB<S△QOD<S△BOC時,求t的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,把矩形OCBA放置于直角坐標系中,OC=3,BC=2,取AB的中點M,連結MC,把△MBC沿x軸的負方向平移OC的長度后得到△DAO.
(1)直接寫出點D的坐標;
(2)已知點B與點D在經過原點的拋物線上,點P在第一象限內的該拋物線上移動,過點P作PQ⊥x軸于點Q,連結OP.若以O、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(個008•棗莊)在直角坐標平面中,O為坐標原點,二次函數y=-x+(k-1)x+4的圖象與y軸交于點A,與x軸的負半軸交于點B,且S△OAB=a.
(1)求點A與點B的坐標;
(個)求此二次函數的解析式;
(3)如果點d在x軸上,且△ABd是等腰三角形,求點d的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在△ABC中,∠ACB=90°,點A的坐標為(0,2),點B(-3,1)在拋物線y=ax2+ax-2上,點C在x軸上.
(1)求a的值;
(2)求點C的坐標;
(3)若△ABC是等腰直角三角形
①如圖1,將△ABC繞頂點A逆時針方向旋轉β°(0<β<180°)得到△AB′C′,當點C′(2,1)恰好落在該拋物線上,請你通過計算說明點B′也在該拋物線上.
②如圖2,設拋物線與y軸的交點為D、P、Q兩點同時從D點出發(fā),點P沿折線D→C→B運動到點B,點Q沿拋物線(在第二、三象限的部分)運動到點B,若P、Q兩點的運動速度相同,請問誰先到達點B,為什么?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,把矩形COAB繞點C順時針旋轉α角,得到矩形CFED.設FC與AB交于點H,且A(0,4),C(6,0)(如圖1).
(1)當α=60°時,△CBD的形狀是______;
(2)當AH=HC時,求直線FC的解析式;
(3)當α=90°時,(如圖2).請?zhí)骄浚航涍^點D,且以點B為頂點的拋物線,是否經過矩形CFED的對稱中心M,并說明理由.

查看答案和解析>>

同步練習冊答案