【題目】在直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)P(m,n)在反比例函數(shù)的圖象上.
(1)若m=k,n=k﹣2,則k=_____;
(2)若m+n=k,OP=2,且此反比例函數(shù),滿足:當(dāng)x>0時(shí),y隨x的增大而減小,則k=_____.
【答案】3 1+
【解析】
(1)函數(shù)經(jīng)過(guò)一定點(diǎn),將此點(diǎn)坐標(biāo)代入函數(shù)解析式(k≠0),即可求得k的值;
(2)根據(jù)點(diǎn)(x,y)到原點(diǎn)的距離公式d=,得到關(guān)于m,n的方程;
再結(jié)合完全平方公式的變形,得到關(guān)于k的方程,進(jìn)一步求得k值.
解:(1)根據(jù)題意,得
k﹣2==1,
∴k=3.
(2)∵點(diǎn)P(m,n)在反比例函數(shù)y=的圖象上.
∴mn=k
又∵OP=2,
∴=2,
∴(m+n)2﹣2mn﹣4=0,
又m+n=k,mn=k,
得k2﹣2k=4,
(k﹣1)2=5,
∵x>0時(shí),y隨x的增大而減小,則k>0.
∴k﹣1=,
k=1+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為2的正方形ABCD的頂點(diǎn)A、B在一個(gè)半徑為2的圓上, 頂點(diǎn)C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無(wú)滑動(dòng)的滾動(dòng).當(dāng)滾動(dòng)一周回到原位置時(shí),點(diǎn)C運(yùn)動(dòng)的路徑長(zhǎng)為__ _.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校去年在某商場(chǎng)購(gòu)買(mǎi)甲、乙兩種不同足球,購(gòu)買(mǎi)甲種足球共花費(fèi)2400元,購(gòu)買(mǎi)乙種足球共花費(fèi)1600元,購(gòu)買(mǎi)甲種足球數(shù)量是購(gòu)買(mǎi)乙種足球數(shù)量的2倍.且購(gòu)買(mǎi)一個(gè)乙種足球比購(gòu)買(mǎi)一個(gè)甲種足球多花20元.
(1)求購(gòu)買(mǎi)一個(gè)甲種足球、一個(gè)乙種足球各需多少元;
(2)今年學(xué)校為編排“足球操”,決定再次購(gòu)買(mǎi)甲、乙兩種足球共50個(gè).如果兩種足球的單價(jià)沒(méi)有改變,而此次購(gòu)買(mǎi)甲、乙兩種足球的總費(fèi)用不超過(guò)3500元,那么這所學(xué)校最少可購(gòu)買(mǎi)多少個(gè)甲種足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2-12ax+36a-5的圖象在4<x<5這一段位于x軸下方,在8<x<9這一段位于x軸上方,則a的值為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探究)
(1)觀察下列算式,并完成填空:
1=12
1+3=4=22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+…+(2n-1)=______.(n是正整數(shù))
(2)如圖是某市一廣場(chǎng)用正六邊形、正方形和正三角形地板磚鋪設(shè)的圖案,圖案中央是一塊正六邊形地板磚,周圍是正方形和正三角形的地板磚.從里向外第一層包括6塊正方形和6塊正三角形地板磚;第二層包括6塊正方形和18塊正三角形地板磚;以此遞推.
①第3層中分別含有______塊正方形和______塊正三角形地板磚;
②第n層中含有______塊正三角形地板磚(用含n的代數(shù)式表示).
(應(yīng)用)
該市打算在一個(gè)新建廣場(chǎng)中央,采用如圖樣式的圖案鋪設(shè)地面,現(xiàn)有1塊正六邊形、150塊正方形和420塊正三角形地板磚,問(wèn):鋪設(shè)這樣的圖案,最多能鋪多少層?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1.對(duì)角線AC、BD相交于點(diǎn)O,P是BC延長(zhǎng)線上的一點(diǎn),AP交BD于點(diǎn)E,交CD于點(diǎn)H,OP交CD于點(diǎn)F,且EF與AC平行.
(1)求證:EF⊥BD.
(2)求證:四邊形ACPD為平行四邊形.
(3)求OF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知E為長(zhǎng)方形紙片ABCD的邊CD上一點(diǎn),將紙片沿AE對(duì)折,點(diǎn)D的對(duì)應(yīng)點(diǎn)D′恰好在線段BE上.若AD=3,DE=1,則AB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:直線l過(guò)點(diǎn)(0,2),且與x軸平行;直線與y軸交于A點(diǎn),與直線l交于B點(diǎn);拋物線的頂點(diǎn)為C.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求點(diǎn)C的坐標(biāo)(用m表示);
(3)若拋物線與線段AB有公共點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線的對(duì)稱軸及線段AB的長(zhǎng);
(2)拋物線的頂點(diǎn)為P,若∠APB=120°,求頂點(diǎn)P的坐標(biāo)及a的值;
(3)若在拋物線上存在一點(diǎn)N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com