精英家教網 > 初中數學 > 題目詳情

【題目】xy,(a-3)x>(a-3)y,a的取值范圍是________

【答案】a<3

【解析】

根據題意,在不等式x<y的兩邊同時乘以(a-3)后不等號改變方向,根據不等式的性質,得出a-3<0,解此不等式即可求解.

解:∵若x<y,且(a-3)x>(a-3)y,
a-3<0,
解得a<3.
故答案為:a<3.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,兩個直角三角形重疊在一起,將其中一個三角形沿著點B到點C的方向平移到△DEF的位置,AB=6,DH=2,平移距離為3,則陰影部分的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB∥CD,若EG平分∠BEF,FM平分∠EFD交EG于M,EN平分∠AEF,則與∠FEM互余的角有(
A.3個
B.4個
C.5個
D.6個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列判斷中錯誤的是(
A.有兩角和其中一個角的對邊對應相等的兩個三角形全等
B.有一邊相等的兩個等邊三角形全等
C.有兩邊和一角對應相等的兩個三角形全等
D.有兩邊和其中一邊上的中線對應相等的兩個三角形全等

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠C=70°,若沿圖中虛線截去∠C,則∠1+∠2=(

A.360°
B.250°
C.180°
D.140°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1
(1)當∠A為70°時, ∵∠ACD﹣∠ABD=∠
∴∠ACD﹣∠ABD=°
∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線
∴∠A1CD﹣∠A1BD= (∠ACD﹣∠ABD)
∴∠A1=°;
(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2 , ∠A2BC與A2CD的平分線交于A3 , 如此繼續(xù)下去可得A4、…、An , 請寫出∠A與∠An的數量關系
(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構成的角,若∠A+∠D=230度,則∠F=
(4)如圖3,若E為BA延長線上一動點,連EC,∠AEC與∠ACE的角平分線交于Q,當E滑動時有下面兩個結論:①∠Q+∠A1的值為定值;②∠Q﹣∠A1的值為定值.其中有且只有一個是正確的,請寫出正確的結論,并求出其值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據調查結果繪制了不完整的頻數分布表和扇形統計圖.

類別

頻數(人數)

頻率

小說

0.5

戲劇

4

散文

10

0.25

其他

6

合計

1

根據圖表提供的信息,解答下列問題:

(1)八年級一班有多少名學生?

(2)請補全頻數分布表,并求出扇形統計圖中“其他”類所占的百分比;

(3)在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列能夠成直角三角形的是(

A. 12,3B. 3,4,5C. 56,7D. 12,13,18

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ACBC,過點C的直線MNAB,DAB邊上一點,且AD=4,過點DDEBC,交直線MNE,垂足為F,連接CD、BE

(1)求CE的長;

(2)當DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

查看答案和解析>>

同步練習冊答案