【題目】求下列函數(shù)的圖象的對稱軸、頂點坐標及與x軸的交點坐標.
(1)y=4x2+24x+35;
(2)y=-3x2+6x+2;
(3)y=x2-x+3;
(4)y=2x2+12x+18.
【答案】(1)對稱軸是直線x=-3,頂點坐標是(-3,-1),它與x軸的交點坐標(-,0),(-,0);
(2)對稱軸是直線x=1,頂點坐標是(1,5),它與x軸的交點坐標是(,0),(,0);
(3)對稱軸是直線x=,頂點坐標是(,),它與x軸沒有交點;
(4)對稱軸是直線x=-3,頂點坐標是(-3,0),它與x軸的交點坐標是(-3,0).
【解析】因為二次函數(shù)的對稱軸為,頂點坐標為,與x軸的交點的縱坐標為0.所以代入公式,求解即可.
解:(1)∵y=4x2+24x+35,
∴對稱軸是直線x=-3,頂點坐標是(-3,-1),
解方程4x2+24x+35=0,得x1=-,x2=-,
故它與x軸交點坐標是,;
(2)∵y=-3x2+6x+2,
∴對稱軸是直線x=1,頂點坐標是(1,5),
解方程-3x2+6x+2=0,
得x1=1+,x2=1-,
故它與x軸的交點坐標是,;
(3)∵y=x2-x+3,
∴對稱軸是直線x=,頂點坐標是,
解方程x2-x+3=0,無解,故它與x軸沒有交點;
(4)∵y=2x2+12x+18,
∴對稱軸是直線x=-3,頂點坐標是(-3,0),
當y=0時,2x2+12x+18=0,
∴x1=x2=-3,
∴它與x軸的交點坐標是(-3,0).
科目:初中數(shù)學 來源: 題型:
【題目】一個由若干小正方形堆成的幾何體,它從正面看和從左面看的圖形如圖1所示.
這個幾何體可以是圖2中甲,乙,丙中的______;
這個幾何體最多由______個小正方體堆成,最少由______個小正方體堆成;
請在圖3中用陰影部分畫出符合最少情況時的一個從上面往下看得到的圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以的斜邊,直角邊為邊向外作等邊和,為的中點,,相交于點.若∠BAC=30°,下列結論:①;②四邊形為平行四邊形;③;④.其中正確結論的序號是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;
(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間有何關系?說明理由.
(3)若點P在Rt△ABC斜邊BA的延長線上運動(CE<CD),則∠α、∠1、∠2之間有何關系?猜想并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】旅游公司在景區(qū)內配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運規(guī)律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.
(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應為多少元?(注:凈收入=租車收入﹣管理費)
(2)當每輛車的日租金為多少元時,每天的凈收入最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著科技的進步和網(wǎng)絡資源的豐富,在線學習已成為更多人的自主學習選擇.某校計劃為學生提供以下四類在線學習方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學生需求,該校隨機對本校部分學生進行了“你對哪類在線學習方式最感興趣”的調查,并根據(jù)調查結果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)圖中信息,解答下列問題:
(1)求本次調查的學生總人數(shù),并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中“在線討論”對應的扇形圓心角的度數(shù);
(3)該校共有學生人,請你估計該校對在線閱讀最感興趣的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,O,D分別為AB,BC上的點,經過A,D兩點的⊙O分別交AB,AC于點E,F(xiàn),且D為弧EF的中點.
(1)求證:BC與⊙O相切;
(2)當⊙O的半徑r=2,∠CAD=30°時,求劣弧AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com