【題目】(1)如圖①所示,P是等邊△ABC內(nèi)的一點,連接PA、PB、PC,將△BAPB點順時針旋轉(zhuǎn)60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;

(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內(nèi)的一點,連接PA、PB、PC,將△BAPB點順時針旋轉(zhuǎn)90°得△BCQ,連接PQ.當PA、PB、PC滿足什么條件時,∠PQC=90°?請說明.

【答案】1)證明見解析(2)滿足:

【解析】

由旋轉(zhuǎn)得△BAP≌△BCQ 滿足:

∴PA=CQ PB=BQ 由旋轉(zhuǎn)得△BAP≌△BCQ

∵∠PBQ=60∴PA=CQ PB=BQ

∴△PBQ為等邊三角形 ∠PBQ=

∴PB=PQ ∴

∵PA+PB=PC

∴∠PQC=90

1)由旋轉(zhuǎn)的性質(zhì)可得到的條件是:①BP=BQ、PA=QC②∠ABP=∠CBQ;

可證得∠PBQ=∠CBP+∠CBQ=∠CBP+∠ABP=∠ABC=60°,聯(lián)立BP=BQ,即可得到△BPQ是等邊三角形的結論,則BP=PQ;將等量線段代換后,即可得出PQ2+QC2=PC2,由此可證得∠PQC=90°;

2)由(1)的解題思路知:△PBQ是等腰Rt△,則PQ2=2PB2,其余過程同(1),只不過所得結論稍有不同.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校對七、八、九年級的學生進行體育水平測試,成績評定為優(yōu)秀、良好、合格、不合格四個等第.為了解這次測試情況,學校從三個年級隨機抽取200名學生的體育成績進行統(tǒng)計分析.相關數(shù)據(jù)的統(tǒng)計圖、表如下:

根據(jù)以上信息解決下列問題:

1)在統(tǒng)計表中,a的值為      ,b的值為      ;

2)在扇形統(tǒng)計圖中,八年級所對應的扇形圓心角為      度;

3)若該校三個年級共有2000名學生參加考試,試估計該校學生體育成績不合格的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰梯形ABCD中,AD//BC,EAB的中點,過點EEF//BCCD于點F,AB4BC6,B60°

1)求點EBC的距離;

2)點P為線段EF上的一個動點,過點PPMEFBCM,過MMN//AB交折線ADCN,連結PN,設EPx

①當點N在線段AD上時(如圖2),PMN的形狀是否發(fā)生改變?若不變,求出PMN的周長;若改變,請說明理由;

②當點N在線段DC上時(如圖3),是否存在點P,使PMN為等腰三角形?若存在,請求出所有滿足條件的x的值;若不存在,請說明理由.

1 2 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上的AB兩點分別對應數(shù)字a、b,且a、b滿足|4a-b|+a-42=0

1a= ,b= ,并在數(shù)軸上面出A、B兩點;

2)若點P從點A出發(fā),以每秒3個單位長度向x軸正半軸運動,求運動時間為多少時,點P到點A的距離是點P到點B距離的2倍;

3)數(shù)軸上還有一點C的坐標為30,若點P和點Q同時從點A和點B出發(fā),分別以每秒3個單位長度和每秒1個單位長度的速度向C點運動,P點到達C點后,再立刻以同樣的速度返回,運動到終點A.求點P和點Q運動多少秒時,P、Q兩點之間的距離為4,并求此時點Q對應的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a,bc是直角三角形的三條邊長,斜邊c上的高的長是h,給出下列結論

a2,b2c2的長為邊的三條線段能組成一個三角形

, , 的長為邊的三條線段能組成一個三角形

a+b,c+hh的長為邊的三條線段能組成直角三角形

, , 的長為邊的三條線段能組成直角三角形

其中所有正確結論的序號為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABCBA=BC,點DAB延長線上一點,DF⊥ACFBCE,

求證:△DBE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+bx﹣x軸交于點A(﹣3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點Px軸上一動點,連接DP,過點PDP的垂線與y軸交于點E.

(1)試求出二次函數(shù)的表達式和點B的坐標;

(2)當點P在線段AO(點P不與A、O重合)運動至何處時,線段OE的長有最大值,求出這個最大值;

(3)是否存在這樣的點P,使PED是等腰三角形?若存在,請求出點P的坐標及此時PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,O為坐標原點,已知A(-1,1),在坐標軸上確定點P,使△AOP為等腰三角形,則符合條件的點P的個數(shù)共有(  。

A. 10個 B. 8個 C. 4個 D. 6個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰RtABC,CAB=90°,P是△ABC內(nèi)一點,PA=1,PB=3,PC= .:CPA的大小

查看答案和解析>>

同步練習冊答案