【題目】某市民廣場有一個直徑16米的圓形噴水池,噴水池的周邊有一圈噴水頭(噴水頭高度忽略不計),各方向噴出的水柱恰好在噴水池中心的裝飾物OA的頂端A處匯合,水柱離中心3米處達最高5米,如圖所示建立直角坐標系.王師傅在噴水池內(nèi)維修設備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的他站立時必須在離水池中心O________米以內(nèi).

【答案】7

【解析】

根據(jù)頂點坐標可設二次函數(shù)的頂點式,代入點(8,0),求出a值,求出函數(shù)解析式,利用二次函數(shù)圖象上點的坐標特征,求出當y=1.8x的值,由此即可得出結(jié)論;

設水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=ax32+5a≠0),
將(8,0)代入y=ax32+5,得:

25a+5=0,
解得:a=
∴水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=x32+50x8).

y=1.8時,有-x32+5=1.8,
解得:x1=1(舍去),x2=7,
∴為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心7米以內(nèi).

故答案為:7

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E是對角線BD上任意一點,連接AE并延長AEBC的延長線于點F,交CD于點G

1)求證:∠DAE=∠DCE;

2)若∠F30°,DG2,求CG的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C分別在x軸、y軸上,OA4OC3,直線my=﹣x從原點O出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,設直線m與矩形OABC的兩邊分別交于點MN,直線m運動的時間為t(),設△OMN的面積為S,則能反映St之間函數(shù)關(guān)系的大致圖象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,對角線ACBD相交于點O,DHABH,連接OH,

1)求證:∠DHO=DCO

2)若OC=4,BD=6,求菱形ABCD的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+5的圖象與坐標軸交于A,B兩點,與反比例函數(shù)y的圖象交于MN兩點,過點MMCy軸于點C,且CM1,過點NNDx軸于點D,且DN1.已知點Px軸(除原點O外)上一點.

1)直接寫出M、N的坐標及k的值;

2)將線段CP繞點P按順時針或逆時針旋轉(zhuǎn)90°得到線段PQ,當點P滑動時,點Q能否在反比例函數(shù)的圖象上?如果能,求出所有的點Q的坐標;如果不能,請說明理由;

3)當點P滑動時,是否存在反比例函數(shù)圖象(第一象限的一支)上的點S,使得以P、S、M、N四個點為頂點的四邊形是平行四邊形?若存在,請直接寫出符合題意的點S的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司開發(fā)出一款新包裝的牛奶,牛奶的成本價為6/盒,這種新包裝的牛奶在正式投放市場前通過代銷點進行了為期一個月(30)的試營銷,售價為8/盒.前幾天的銷量每況愈下,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪成圖象,圖中的線段表示前12天日銷售量y()與銷售時間x()之間的函數(shù)關(guān)系,于是從第13天起采用打折銷售(不低于成本價),時間每增加1天,日銷售量就增加10盒.

1)打折銷售后,第17天的日銷售量為________盒;

2)求yx之間的函數(shù)關(guān)系式,并寫出x的取值范圍;

3)已知日銷售利潤不低于560元的天數(shù)共有6天,設打折銷售的折扣為a折,試確定a的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AEBF,AC平分BAE,且交BF于點C,BD平分ABF,且交AE于點D,連接CD.

(1)求證:四邊形ABCD是菱形;

(2)若ADB=30°,BD=6,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),點C在第二象限,BCy軸交于點D(0,c),若y軸平分∠BAC,則點C的坐標不能表示為(  )

A. (b+2a,2b) B. (﹣b﹣2c,2b)

C. (﹣b﹣c,﹣2a﹣2c) D. (a﹣c,﹣2a﹣2c)

查看答案和解析>>

同步練習冊答案