【題目】如圖,EF∥AD,∠1=∠2,∠B=35°,將求∠BDG的過程填寫完整. 解:∵EF∥AD,
∴∠2=
又∵∠1=∠2
∴∠1=( 等量代換 )
∴DG∥
∴∠B+=180°(
∵∠B=35°
∴∠BDG=

【答案】∠3;兩直線平行,同位角相等,;∠3;AB;內(nèi)錯角相等,兩直線平行;∠BDG;兩直線平行,同旁內(nèi)角互補;145°
【解析】解:∵EF∥AD, ∴∠2=∠3(兩直線平行,同位角相等),
又∵∠1=∠2(已知),
∴∠1=∠3(等量代換),
∴DG∥AB(內(nèi)錯角相等,兩直線平行),
∴∠B+∠BDG=180°(兩直線平行,同旁內(nèi)角互補),
∵∠B=35°,
∴∠BDG=145°,
所以答案是∠3,兩直線平行,同位角相等,∠3,AB,內(nèi)錯角相等,兩直線平行,∠BDG,兩直線平行,同旁內(nèi)角互補,145°
【考點精析】認真審題,首先需要了解平行線的判定與性質(zhì)(由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次三項式x2-8x+22的最小值為( )

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場需要,今年該農(nóng)場擴大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,已知南瓜種植面積的增長率是畝產(chǎn)量的增長率的2倍,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)教育局為了解今年九年級學(xué)生體育測試情況,隨機抽查了某班學(xué)生的體育測試成績?yōu)闃颖,?/span>A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:

說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下

1)樣本中D級的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是

2)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是 ;

3)請把條形統(tǒng)計圖補充完整;

4)若該校九年級有500名學(xué)生,請你用此樣本估計體育測試中A級和B級的學(xué)生人數(shù)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件不能證明△ABC≌△DCB的是(

A.AB=DC,AC=DB
B.AB=DC,∠ABC=∠DCB
C.BO=CO,∠A=∠D
D.AB=DC,∠A=∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,點E、F分別是AD、BC的中點,分別連接BE、DF、BD.

(1)求證:△AEB≌△CFD;

(2)若四邊形EBFD是菱形,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是平行四邊形ABCD邊AB上一點,且AB=3AP,連接CP,并延長CP、DA交于點E,則△AEP與△DEC的周長之比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A、B兩點,B點坐標(biāo)為(3,0),與y軸交于點C0,﹣3

1)求拋物線的解析式;

2)點P在拋物線位于第四象限的部分上運動,當(dāng)BCP的面積最大時,求點P的坐標(biāo)和BCP的最大面積.

3)當(dāng)BCP的面積最大時,在拋物線上是否點Q(異于點P),使BCQ的面積等于BCP,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各式.
(1)( )(4 + )﹣ ;
(2)(a + )÷

查看答案和解析>>

同步練習(xí)冊答案