【題目】如圖,△ABC中,D是BC邊上一點,E是AD的中點,過點A作BC的平行線交CE的延長線于F,且AF=BD,連結(jié)BF.
(1)求證:①△EAF≌△EDC;
②D是BC的中點;
(2)若AB=AC,求證:四邊形AFBD是矩形.
【答案】
(1)證明:①∵AF∥BC,
∴∠AFE=∠DCE,
∵點E為AD的中點,
∴AE=DE,
在△AEF和△EDC中, ,
∴△EAF≌△EDC(AAS);
②∵△AEF≌△DEC,
∴AF=CD,
∵AF=BD,
∴CD=BD;
即D是BC的中點
(2)證明:∵AF∥BD,AF=BD,
∴四邊形AFBD是平行四邊形,
∵AB=AC,BD=CD,
∴∠ADB=90°,
∴平行四邊形AFBD是矩形
【解析】(1)①由AF∥BC,根據(jù)兩直線平行,內(nèi)錯角相等求出∠AFE=∠DCE,由點E為AD的中點,得出AE=DE,然后再證明三角形全等即可。②由全等三角形的性質(zhì)容易得出結(jié)論;
(2)先利用一組對邊平行且相等的四邊形是平行四邊形,證明四邊形AFBD是平行四邊形,再根據(jù)一個角是直角的平行四邊形是矩形判定即可。
【考點精析】本題主要考查了平行四邊形的判定與性質(zhì)和矩形的判定方法的相關(guān)知識點,需要掌握若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積;有一個角是直角的平行四邊形叫做矩形;有三個角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l所對應(yīng)的函數(shù)表達式為y=x.過點A1(0,1)作y軸的垂線交直線l于點B1 , 過點B1作直線l的垂線交y軸于點A2;過點A2作y軸的垂線交直線l于點B2 , 則點B2的坐標(biāo)為( )
A.(1,1)
B.( , )
C.(2,2)
D.( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點為第一象限內(nèi)一點,點為軸正半軸上一點,分別連接,,為等邊三角形,點的橫坐標(biāo)為4.
(1)如圖1,求線段的長;
(2)如圖2,點在線段上(點不與點、點重合),點在線段的延長線上,連接,,,設(shè)的長為,的長為,求與的關(guān)系式(不要求寫出的取值范圍)
(3)在(2)的條件下,點為第四象限內(nèi)一點,分別連接,,,為等邊三角形,線段的垂直平分線交的延長線于點,交于點,連接,交于點,連接,若,求點的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道對于一個圖形,通過不同的方法計算圖形的面積可以得到一個數(shù)學(xué)等式.
例如:由圖1可得到(a+b)=a+2ab+b.
圖1 圖2 圖3
(1)寫出由圖2所表示的數(shù)學(xué)等式:_____________________;寫出由圖3所表示的數(shù)學(xué)等式:_____________________;
(2)利用上述結(jié)論,解決下面問題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD,BE分別是∠BAC,∠ABC的角平分線.
(1)若∠C=70°,∠BAC=60°,則∠BED的度數(shù)是 ;若∠BED=50°,則∠C的度數(shù)是 .
(2)探究∠BED與∠C的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的反比例函數(shù),且x=8時,y=12.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)如果自變量x的取值范圍是2≤x≤3,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是雙曲線y= 在第一象限分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為邊作等邊△ABC,點C在第四象限內(nèi),且隨著點A的運動,點C的位置也在不斷變化,但點C始終在雙曲線y= 上運動,則k的值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com