【題目】如圖,正方形ABCD的邊長為a,在AB、BC、CD、DA邊上分別取點A1、B1、C1、D1 , 使AA1=BB1=CC1=DD1=a,在邊A1B1、B1C1、C1D1、D1A1上分別取點A2、B2、C2、D2 , 使A1A2=B1B2=C1C2=D1D2=A1B2 , ….依次規(guī)律繼續(xù)下去,則正方形AnBnCnDn的面積為 .

【答案】
【解析】解:在Rt△A1BB1中,由勾股定理可知;,即正方形A1B1C1D1的面積=;
在Rt△A2B1B2中,由勾股定理可知:=;即正方形A2B2C2D2的面積=

∴正方形AnBnCnDn的面積=
所以答案是:
【考點精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c=(a≠0)圖象的一部分,對稱軸是直線x=﹣2.關(guān)于下列結(jié)論:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的兩個根為x1=0,x2=﹣4,其中正確的結(jié)論有( 。

A.①③④
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年5月,某校組織了以“德潤書香”為主題的電子小報制作比賽,評分結(jié)果只有60,70,80,90,100五種,現(xiàn)從中隨機抽取部分作品,對其份數(shù)和成績進行整理,制成如下兩幅不完整的統(tǒng)計圖:

根據(jù)以上信息,解答下列問題:
(1)求本次抽取了多少份作品,并補全兩幅統(tǒng)計圖;
(2)已知該校收到參賽作品共900份,比賽成績達到90分以上(含90分)的為優(yōu)秀作品,據(jù)此估計該校參賽作品中,優(yōu)秀作品有多少份?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+3與x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經(jīng)過B、C兩點.

(1)求拋物線的解析式;
(2)如圖,點E是直線BC上方拋物線上的一動點,當(dāng)△BEC面積最大時,請求出點E的坐標(biāo)和△BEC面積的最大值?
(3)在(2)的結(jié)論下,過點E作y軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是正方形ABCD內(nèi)的一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.

(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長BP交直線DQ于點E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,E為BC邊中點,連接AE,以AD為直徑的⊙O交AE于點F,連接CF.

(1)求證:CF與⊙O相切;
(2)若AD=2,F(xiàn)為AE的中點,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲市到乙市乘坐高速列車的路程為180千米,乘坐普通列車的路程為240千米.高速列車的平均速度是普通列車的平均速度的3倍.高速列車的乘車時間比普通列車的乘車時間縮短了2小時.高速列車的平均速度是每小時多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實行二級階梯水價計量辦法,具體如下:第一階梯,每戶居民月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民月用水量超過12噸,超過部分的價格為8元/噸.為了了解全市居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)求頻率分布直方圖中字母a的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)m的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費y(元)與月份x的散點圖,其擬合的線性回歸方程是 =2x+33,若張某2016年1~7月份水費總支出為312元,試估計張某7月份的用水噸數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,cosA= ,BE,CF分別是AC,AB邊上的高,聯(lián)結(jié)EF,那么△AEF和△ABC的周長比為(
A.1:2
B.1:3
C.1:4
D.1:9

查看答案和解析>>

同步練習(xí)冊答案