已知一元二次方程ax2+bx+c=0中二次項系數(shù),一次項系數(shù)和常數(shù)項之和為0,那么方程必有一根為( )
A.0
B.1
C.-1
D.±1
【答案】分析:一元二次方程ax2+bx+c=0中二次項系數(shù),一次項系數(shù)和常數(shù)項之和為0,即a+b+c=0,根據方程解的定義,當x=1時,方程即可變形成a+b+c=0,即可確定方程的解.
解答:解:根據題意:當x=1時,方程左邊=a+b+c
而a+b+c=0,即當x=1時,方程ax2+bx+c=0成立.
故x=1是方程的一個根.
故選B.
點評:本題主要考查方程的根的定義,能夠找到已知的式子與方程的關系是解決本題的關系.并且本題作為一個選擇題,可以采用代入檢驗的方法,進行判斷.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設a<0,當二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個交點的距離為
13
時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為
3
13
2
?若存在求出P點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一元二次方程x2+ax+b=0①,x2+bx+a=0②,方程①與方程②有且只有一個公共根,則a與b之間應滿足的關系式為
a+b+1=0
a+b+1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;

(2)設a<0,當二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;

(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據二次函數(shù)圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數(shù)綜合應用問題和三角形的綜合應用

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一元二次方程x2axa-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設a<0,當二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆北京市西城區(qū)九年級一模數(shù)學卷(解析版) 題型:解答題

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;

(2)設a<0,當二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;

(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據二次函數(shù)圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數(shù)綜合應用問題和三角形的綜合應用

 

查看答案和解析>>

同步練習冊答案