精英家教網 > 初中數學 > 題目詳情

如圖,△ABC中,已知BE⊥AD,CF⊥AD,且BE=CF.

1.請你判斷AD是△ABC的中線還是角平分線?請證明你的結論.

2.連接BF、CE,若四邊形BFCE是菱形,則△ABC中應添加一個條件             。

(填上你認為正確的一個條件即可)

 

 

1.AD是△ABC的中線...................1分

理由如下:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°...1分

又∵BE=CF,∠BDE=∠CFD ∴△BDE≌△CFD(AAS)...2分

∴BD=CD,∴AD是△ABC的中線......................1分

2.AB=AC或∠ABC=∠ACB或AD⊥BC或AD平分∠BAC...3分

 解析:略

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖在△ABC中,已知點D、E、F分別為邊BC,AD,CE的中點,且△ABC的面積是4,則△BEF的面積是
 

查看答案和解析>>

科目:初中數學 來源: 題型:

15、如圖,△ABC中,已知AB=AC,要使AD=AE,需要添加的一個條件是
BD=CE

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC中,已知AB=AC,△DEF是△ABC的內接正三角形,α=∠BDF,β=∠CED,γ=∠AFE,則用β、γ表示α的關系式是
α=
β+γ
2
α=
β+γ
2

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC中,已知AB=AC,BD=DC,則∠ADB=
90°
90°

查看答案和解析>>

科目:初中數學 來源: 題型:

對同一圖形,從不同的角度看就會有不同的發(fā)現,請根據右圖解決以下問題:
(1)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,分別以AB、AC所在的直線為對稱軸,作出△ABD、△ACD的軸對稱圖形,點D的對稱點分別為E、F,延長EB、FC相交于G點,試證明四邊形AEGF是正方形;
(2)如圖,在邊長為12cm的正方形AEFG中,點B是邊EG上一點,將邊AE、AF分別沿AB、AC向內翻折至AD處,則點B、D、C在一條直線上,若EB=4cm,求△ABC的面積.

查看答案和解析>>

同步練習冊答案