【題目】如圖,小強(qiáng)和小華共同站在路燈下,小強(qiáng)的身高EF=1.8m,小華的身高M(jìn)N=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是

【答案】4m
【解析】解:設(shè)路燈的高度為xm, ∵EF∥AD,
∴△BEF∽△BAD,
,
= ,
解得DF=x﹣1.8,
∵M(jìn)N∥AD,
∴△CMN∽△CAD,

= ,
解得DN=x﹣1.5,
∵兩人相距4.7m,
∴FD+ND=4.7,
∴x﹣1.8+x﹣1.5=4.7,
解得x=4,
故答案為:4m.

設(shè)路燈的高度為xm,根據(jù)相似三角形對應(yīng)邊成比例可得, ,即 = ,可得DF的表達(dá)式,再根據(jù)相似三角形對應(yīng)邊成比例,同樣可得DN的表達(dá)式,由于DF+DN=4.7,可得關(guān)于x的方程,然后解方程求出x即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】看圖說故事. 請你編寫一個故事,使故事情境中出現(xiàn)的一對變量x、y滿足圖示的函數(shù)關(guān)系,要求:

(1)指出變量x和y的含義;
(2)利用圖中的數(shù)據(jù)說明這對變量變化過程的實際意義,其中須涉及“速度”這個量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星期六,小亮從家里騎自行車到同學(xué)家去玩,然后返回,圖是他離家的路程y(千米)與時間x(分鐘)的函數(shù)圖象,根據(jù)圖象信息,下列說法不一定正確的是(
A.小亮到同學(xué)家的路程是3千米
B.小亮在同學(xué)家逗留的時間是1小時
C.小亮去時走上坡路,回家時走下坡路
D.小亮回家時用的時間比去時用的時間少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).

(1)請直接寫出與點B關(guān)于坐標(biāo)原點O的對稱點B1的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°.畫出對應(yīng)的△A′B′C′圖形,直接寫出點A的對應(yīng)點A′的坐標(biāo);
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進(jìn)價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設(shè)每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1 , l2 , 過點(1,0)作x軸的垂線交l1于點A1 , 過點A1作y軸的垂線交l2于點A2 , 過點A2作x軸的垂線交l1于點A3 , 過點A3作y軸的垂線交l2于點A4 , …依次進(jìn)行下去,則點A2017的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點,點C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;
(2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運動.規(guī)定其中一個動點到達(dá)端點時,另一個動點也隨之停止運動.設(shè)運動時間為t秒,當(dāng)t為何值時,PA=QA?
(3)在拋物線的對稱軸上,是否存在點M,使以A,B,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過正方形ABCD頂點B,C的⊙O與AD相切于點P,與AB,CD分別相交于點E,F(xiàn),連接EF.
(1)求證:PF平分∠BFD;
(2)若tan∠FBC= ,DF= ,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,

(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

查看答案和解析>>

同步練習(xí)冊答案